This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.
@article{AIHPC_2019__36_3_837_0, author = {Badreddine, Z.}, title = {Mass transportation on {sub-Riemannian} structures of rank two in dimension four}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {837--860}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.10.003}, zbl = {1429.49046}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/} }
TY - JOUR AU - Badreddine, Z. TI - Mass transportation on sub-Riemannian structures of rank two in dimension four JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 837 EP - 860 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/ DO - 10.1016/j.anihpc.2018.10.003 LA - en ID - AIHPC_2019__36_3_837_0 ER -
%0 Journal Article %A Badreddine, Z. %T Mass transportation on sub-Riemannian structures of rank two in dimension four %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 837-860 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/ %R 10.1016/j.anihpc.2018.10.003 %G en %F AIHPC_2019__36_3_837_0
Badreddine, Z. Mass transportation on sub-Riemannian structures of rank two in dimension four. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 837-860. doi : 10.1016/j.anihpc.2018.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/
[1] Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6019–6047 | DOI | Zbl
[2] Optimal transportation on the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261–301 | DOI | Zbl
[3] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375–417 | DOI | Zbl
[4] The Sard conjecture on Martinet surfaces, Duke Math. J., Volume 167 (2018) no. 8, pp. 1433–1471 | DOI | Zbl
[5] Existence and uniqueness of optimal transport maps, Ann. IHP(C) Nonlinear Anal., Volume 32 (2015) no. 6, pp. 1367–1377 | Numdam | MR | Zbl
[6] Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser, 2004 | DOI | Zbl
[7] Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 124–159 | DOI | Zbl
[8] On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, Volume 37 (1942), pp. 199–201 | Zbl
[9] Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Am. Math. Soc., Volume 118 (1995), pp. 564 | Zbl
[10] Polar factorization of maps in Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589–608 | DOI | Zbl
[11] Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris (1781), pp. 666–704
[12] Surface measures in Carnot–Caratheodory spaces, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 3, pp. 339–376 | DOI | Zbl
[13] Sub-Riemannian geometry and optimal transport, Springer Briefs in Mathematics, 2014 (140 pp) | DOI | Zbl
[14] A Cornucopia of Abnormal Sub-Riemannian Minimizers, Birkhäuser, 1996, pp. 341–364
[15] Topics in Mass Transportation, Graduate Studies in Mathematics Surveys, vol. 58, American Mathematical Society, Providence, RI, 2003 | Zbl
[16] Optimal Transport, Old and New, Springer, Berlin, 2008 | Zbl
Cité par Sources :