Mass transportation on sub-Riemannian structures of rank two in dimension four
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 837-860.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.

DOI : 10.1016/j.anihpc.2018.10.003
Mots-clés : Sub-Riemannian geometry, Optimal transport problem
Badreddine, Z. 1, 2

1 Université Côte d'Azur, Inria, CNRS, LJAD, France
2 Université de Bourgogne, Institut de Mathématiques de Bourgogne, France
@article{AIHPC_2019__36_3_837_0,
     author = {Badreddine, Z.},
     title = {Mass transportation on {sub-Riemannian} structures of rank two in dimension four},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {837--860},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.003},
     zbl = {1429.49046},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/}
}
TY  - JOUR
AU  - Badreddine, Z.
TI  - Mass transportation on sub-Riemannian structures of rank two in dimension four
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 837
EP  - 860
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/
DO  - 10.1016/j.anihpc.2018.10.003
LA  - en
ID  - AIHPC_2019__36_3_837_0
ER  - 
%0 Journal Article
%A Badreddine, Z.
%T Mass transportation on sub-Riemannian structures of rank two in dimension four
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 837-860
%V 36
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/
%R 10.1016/j.anihpc.2018.10.003
%G en
%F AIHPC_2019__36_3_837_0
Badreddine, Z. Mass transportation on sub-Riemannian structures of rank two in dimension four. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 837-860. doi : 10.1016/j.anihpc.2018.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.003/

[1] Agrachev, A.; Lee, P. Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., Volume 361 (2009) no. 11, pp. 6019–6047 | DOI | Zbl

[2] Ambrosio, L.; Rigot, D. Optimal transportation on the Heisenberg group, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 261–301 | DOI | Zbl

[3] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375–417 | DOI | Zbl

[4] Belotto da Silva, A.; Rifford, L. The Sard conjecture on Martinet surfaces, Duke Math. J., Volume 167 (2018) no. 8, pp. 1433–1471 | DOI | Zbl

[5] Cavalletti, F.; Huesmann, M. Existence and uniqueness of optimal transport maps, Ann. IHP(C) Nonlinear Anal., Volume 32 (2015) no. 6, pp. 1367–1377 | Numdam | MR | Zbl

[6] Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser, 2004 | DOI | Zbl

[7] Figalli, A.; Rifford, L. Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., Volume 20 (2010) no. 1, pp. 124–159 | DOI | Zbl

[8] Kantorovitch, L. On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS, Volume 37 (1942), pp. 199–201 | Zbl

[9] Liu, W.; Sussmann, H.J. Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Am. Math. Soc., Volume 118 (1995), pp. 564 | Zbl

[10] McCann, R. Polar factorization of maps in Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589–608 | DOI | Zbl

[11] Monge, G. Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris (1781), pp. 666–704

[12] Monti, R.; Serra Cassano, F. Surface measures in Carnot–Caratheodory spaces, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 3, pp. 339–376 | DOI | Zbl

[13] Rifford, L. Sub-Riemannian geometry and optimal transport, Springer Briefs in Mathematics, 2014 (140 pp) | DOI | Zbl

[14] Sussmann, H.J. A Cornucopia of Abnormal Sub-Riemannian Minimizers, Birkhäuser, 1996, pp. 341–364

[15] Villani, C. Topics in Mass Transportation, Graduate Studies in Mathematics Surveys, vol. 58, American Mathematical Society, Providence, RI, 2003 | Zbl

[16] Villani, C. Optimal Transport, Old and New, Springer, Berlin, 2008 | Zbl

Cité par Sources :