Description of limiting vorticities for the magnetic 2D Ginzburg–Landau equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 783-809.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Let Ω be a bounded open set in R2. The aim of this article is to describe the functions h in H1(Ω) and the Radon measures μ which satisfy Δh+h=μ and div(Th)=0 in Ω, where Th is a 2×2 matrix given by (Th)ij=2ihjh(|h|2+h2)δij for i,j=1,2. These equations arise as equilibrium conditions satisfied by limiting vorticities and limiting induced magnetic fields of solutions of the magnetic Ginzburg–Landau equations. This was shown by Sandier–Serfaty in [32, 33]. Let us recall that they obtained that |h| is continuous in Ω. We prove that if z0 in Ω is in the support of μ and is such that |h|(z0)0 then μ is absolutely continuous with respect to the 1D-Hausdorff measure restricted to a C1-curve near z0 whereas μ{|h|=0}=h|{|h|=0}L2. We also prove that if Ω is smooth bounded and star-shaped and if h=0 on ∂Ω then h0 in Ω. This rules out the possibility of having critical points of the Ginzburg–Landau energy with a number of vortices much larger than the applied magnetic field hex in that case.

DOI : 10.1016/j.anihpc.2018.10.001
Mots-clés : Ginzburg–Landau theory, Vorticity, Inner-variational problem
@article{AIHPC_2019__36_3_783_0,
     author = {Rodiac, R\'emy},
     title = {Description of limiting vorticities for the magnetic {2D} {Ginzburg{\textendash}Landau} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {783--809},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.001},
     zbl = {1414.35218},
     mrnumber = {3926522},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.001/}
}
TY  - JOUR
AU  - Rodiac, Rémy
TI  - Description of limiting vorticities for the magnetic 2D Ginzburg–Landau equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 783
EP  - 809
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.001/
DO  - 10.1016/j.anihpc.2018.10.001
LA  - en
ID  - AIHPC_2019__36_3_783_0
ER  - 
%0 Journal Article
%A Rodiac, Rémy
%T Description of limiting vorticities for the magnetic 2D Ginzburg–Landau equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 783-809
%V 36
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.001/
%R 10.1016/j.anihpc.2018.10.001
%G en
%F AIHPC_2019__36_3_783_0
Rodiac, Rémy. Description of limiting vorticities for the magnetic 2D Ginzburg–Landau equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 783-809. doi : 10.1016/j.anihpc.2018.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.001/

[1] Alberti, G.; Bianchini, S.; Crippa, G. On the Lp-differentiability of certain classes of functions, Rev. Mat. Iberoam., Volume 30 (2014) no. 1, pp. 349–367 | DOI | MR | Zbl

[2] Alberti, G.; Bianchini, S.; Crippa, G. A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc., Volume 16 (2014) no. 2, pp. 201–234 | DOI | MR | Zbl

[3] Alikakos, N.D.; Faliagas, A.C. The stress-energy tensor and Pohozaev's identity for systems, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012) no. 1, pp. 433–439 | MR | Zbl

[4] Ambrosio, L.; Caselles, V.; Masnou, S.; Morel, J.-M. Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc., Volume 3 (2001) no. 1, pp. 39–92 | DOI | MR | Zbl

[5] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR | Zbl

[6] L. Ambrosio, A.C. Ponce, R. Rodiac, Critical weak-Lp differentiability of singular integrals, submitted. | MR

[7] Aydi, H. Lines of vortices for solutions of the Ginzburg–Landau equations, J. Math. Pures Appl. (9), Volume 89 (2008) no. 1, pp. 49–69 | DOI | MR | Zbl

[8] Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications., vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994 | DOI | MR | Zbl

[9] Caffarelli, L.; Salazar, J. Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves, Trans. Am. Math. Soc., Volume 354 (2002) no. 8, pp. 3095–3115 | DOI | MR | Zbl

[10] Caffarelli, L.; Salazar, J.; Shahgholian, H. Free-boundary regularity for a problem arising in superconductivity, Arch. Ration. Mech. Anal., Volume 171 (2004) no. 1, pp. 115–128 | DOI | MR | Zbl

[11] Caffarelli, L.A. The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998) no. 4–5, pp. 383–402 | MR | Zbl

[12] Calderón, A.P.; Zygmund, A. On the existence of certain singular integrals, Acta Math., Volume 88 (1952), pp. 85–139 | DOI | MR | Zbl

[13] Chapman, S.J.; Rubinstein, J.; Schatzman, M. A mean-field model of superconducting vortices, Eur. J. Appl. Math., Volume 7 (1996) no. 2, pp. 97–111 | DOI | MR | Zbl

[14] Chen, G.-Q.; Torres, M.; Ziemer, W.P. Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume 62 (2009) no. 2, pp. 242–304 | MR | Zbl

[15] Contreras, A.; Serfaty, S. Large vorticity stable solutions to the Ginzburg–Landau equations, Indiana Univ. Math. J., Volume 61 (2012) no. 5, pp. 1737–1763 | DOI | MR | Zbl

[16] de Pascale, L. The Morse–Sard theorem in Sobolev spaces, Indiana Univ. Math. J., Volume 50 (2001) no. 3, pp. 1371–1386 | DOI | MR | Zbl

[17] Delort, J.-M. Existence de nappes de tourbillon en dimension deux, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 553–586 | MR | Zbl

[18] DiPerna, R.J.; Majda, A. Reduced Hausdorff dimension and concentration–cancellation for two-dimensional incompressible flow, J. Am. Math. Soc., Volume 1 (1988) no. 1, pp. 59–95 | MR | Zbl

[19] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015 | MR | Zbl

[20] Faliagas, A.C. On the equivalence of Euler–Lagrange and Noether equations, Math. Phys. Anal. Geom., Volume 19 (2016) no. 1 (12) | DOI | MR | Zbl

[21] Figalli, A. A simple proof of the Morse–Sard theorem in Sobolev spaces, Proc. Am. Math. Soc., Volume 136 (2008) no. 10, pp. 3675–3681 | DOI | MR | Zbl

[22] Frehse, J. On the regularity of the solution of a second order variational inequality, Boll. Unione Mat. Ital., Volume 4 (1972) no. 6, pp. 312–315 | MR | Zbl

[23] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 (Reprint of the 1998 edition) | DOI | MR | Zbl

[24] Hajłasz, P. On approximate differentiability of functions with bounded deformation, Manuscr. Math., Volume 91 (1996) no. 1, pp. 61–72 | DOI | MR | Zbl

[25] Iwaniec, T.; Kovalev, L.V.; Onninen, J. Lipschitz regularity for inner-variational equations, Duke Math. J., Volume 162 (2013) no. 4, pp. 643–672 | DOI | MR | Zbl

[26] Le, N.Q. Regularity and nonexistence results for some free-interface problems related to Ginzburg–Landau vortices, Interfaces Free Bound., Volume 11 (2009) no. 1, pp. 139–152 | MR | Zbl

[27] Pohozaev, S.I. On the eigenfunctions of the equation Δu+λf(u)=0 , Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 36–39 | MR | Zbl

[28] Ponce, A.C. Elliptic PDEs, Measures and Capacities, EMS Tracts in Mathematics, vol. 23, European Mathematical Society (EMS), Zürich, 2016 (From the Poisson equations to nonlinear Thomas–Fermi problems) | DOI | MR

[29] Rivière, T. Conformally invariant variational problems https://people.math.ethz.ch/~riviere/papers/conformal-course.pdf (Lecture notes available at)

[30] Rivière, T. Everywhere discontinuous harmonic maps into spheres, Acta Math., Volume 175 (1995) no. 2, pp. 197–226 | DOI | MR | Zbl

[31] Rodiac, R. Regularity properties of stationary harmonic functions whose Laplacian is a Radon measure, SIAM J. Math. Anal., Volume 48 (2016) no. 4, pp. 2495–2531 | DOI | MR | Zbl

[32] Sandier, E.; Serfaty, S. Limiting vorticities for the Ginzburg–Landau equations, Duke Math. J., Volume 117 (2003) no. 3, pp. 403–446 | DOI | MR | Zbl

[33] Sandier, E.; Serfaty, S. Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007 | DOI | MR | Zbl

[34] Silhavý, M. Divergence measure fields and Cauchy's stress theorem, Rend. Semin. Mat. Univ. Padova, Volume 113 (2005), pp. 15–45 | Numdam | MR | Zbl

[35] Watson, G.N. A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 Reprint of the second (1944) edition | MR | Zbl

Cité par Sources :