Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1183-1200.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Consider operators of the form LγV:=Δ+γV in a bounded Lipschitz domain ΩRN. Assume that VC1(Ω) satisfies |V(x)|a¯dist(x,Ω)2 for every xΩ and γ is a number in a range (γ,γ+) described in the introduction. The model case is V(x)=dist(x,F)2 where F is a closed subset of ∂Ω and γ<cH(V)= Hardy constant for V. We provide sharp two sided estimates of the Green and Martin kernel for LγV in Ω. In addition we establish a pointwise version of the 3G inequality.

DOI : 10.1016/j.anihpc.2018.09.003
Mots-clés : Hardy constant, First eigenfunction, Boundary Harnack principle, 3G inequality
@article{AIHPC_2019__36_5_1183_0,
     author = {Marcus, Moshe},
     title = {Estimates of {Green} and {Martin} kernels for {Schr\"odinger} operators with singular potential in {Lipschitz} domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1183--1200},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.09.003},
     mrnumber = {3985541},
     zbl = {1426.35098},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.003/}
}
TY  - JOUR
AU  - Marcus, Moshe
TI  - Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1183
EP  - 1200
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.003/
DO  - 10.1016/j.anihpc.2018.09.003
LA  - en
ID  - AIHPC_2019__36_5_1183_0
ER  - 
%0 Journal Article
%A Marcus, Moshe
%T Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1183-1200
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.003/
%R 10.1016/j.anihpc.2018.09.003
%G en
%F AIHPC_2019__36_5_1183_0
Marcus, Moshe. Estimates of Green and Martin kernels for Schrödinger operators with singular potential in Lipschitz domains. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1183-1200. doi : 10.1016/j.anihpc.2018.09.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.09.003/

[1] Ancona, A. Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. Math., Second Ser., Volume 125 (1987), pp. 495–536 | DOI | MR | Zbl

[2] Ancona, A. First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Anal. Math., Volume 72 (1997), pp. 45–92 | DOI | MR | Zbl

[3] Bogdan, K. Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl., Volume 243 (2000), pp. 326–337 | DOI | MR | Zbl

[4] Devyver, B.; Pinchover, Y.; Psaradakis, G. Optimal Hardy inequalities in cones, Proc. R. Soc. Edinb., Volume 147A (2017), pp. 89–124 | MR | Zbl

[5] Filippas, S.; Moschini, L.; Tertikas, A. Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains, Commun. Math. Phys., Volume 273 (2007), pp. 237–281 | DOI | MR | Zbl

[6] Frazier, M.; Verbitsky, I.E. Global Green's function estimates, Around the Research of Vladimir Mazya. III, International Mathematical Series (New York), vol. 13, Springer, 2010, pp. 105–152 | MR | Zbl

[7] Frazier, M.; Nazarov, F.; Verbitsky, I.E. Global estimates for kernels of Neumann series and Green's functions, J. Lond. Math. Soc., Volume 90 (2014) no. 3, pp. 903–918 | DOI | MR | Zbl

[8] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, 2001 | MR | Zbl

[9] Hirata, K. Sharp estimates for the Green function, 3G inequalities, and nonlinear Schrödinger problems in uniform cones, J. Anal. Math., Volume 99 (2006), pp. 309–332 | DOI | MR | Zbl

[10] Murata, M. Structure of positive solutions to (Δ+V)u=0 in Rn , Duke Math. J., Volume 53 (1986), pp. 869–943 | DOI | MR | Zbl

[11] Murata, M. Semismall perturbations in the Martin theory for elliptic equations, Isr. J. Math., Volume 102 (1997), pp. 29–60 | DOI | MR | Zbl

[12] Pinchover, Y. Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60-th Birthday, Proc. Symp. Pure Math., vol. 76I, Am. Math. Soc., Providence R.I., 2007, pp. 329–355 | MR | Zbl

[13] Pinchover, Y. Criticality and ground states for second-order elliptic equations, J. Differ. Equ., Volume 80 (1989), pp. 237–250 | DOI | MR | Zbl

[14] Pinchover, Y. On criticality and ground states of second order elliptic equations, II, J. Differ. Equ., Volume 87 (1990), pp. 353–364 | DOI | MR | Zbl

[15] Y. Pinchover, Personal communication.

[16] Simon, B. Schrödinger semigroups, Bull., New Ser., Am. Math. Soc., Volume 7 (1982), pp. 447–526 | DOI | MR | Zbl

[17] Verbitsky, I.E. Green's function estimates for some linear and nonlinear elliptic problems, Symmetry for Elliptic PDEs, Contemp. Math., vol. 528, Amer. Math. Soc., Providence RI, 2010, pp. 59–69 | MR | Zbl

Cité par Sources :