Nous considérons le problème de Cauchy pour l'équation d'Allen–Cahn (de moyenne non nulle) anisotropique dans
We consider the Cauchy problem for the anisotropic (unbalanced) Allen–Cahn equation on
Mots-clés : Anisotropic Allen–Cahn equation, Spreading front, Stability, Anisotropic mean curvature flow, Wulff shape
@article{AIHPC_2019__36_3_585_0, author = {Matano, Hiroshi and Mori, Yoichiro and Nara, Mitsunori}, title = {Asymptotic behavior of spreading fronts in the anisotropic {Allen{\textendash}Cahn} equation on $ {\mathbb{R}}^{n}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {585--626}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.07.003}, mrnumber = {3926517}, zbl = {1411.35161}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/} }
TY - JOUR AU - Matano, Hiroshi AU - Mori, Yoichiro AU - Nara, Mitsunori TI - Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 585 EP - 626 VL - 36 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/ DO - 10.1016/j.anihpc.2018.07.003 LA - en ID - AIHPC_2019__36_3_585_0 ER -
%0 Journal Article %A Matano, Hiroshi %A Mori, Yoichiro %A Nara, Mitsunori %T Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 585-626 %V 36 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/ %R 10.1016/j.anihpc.2018.07.003 %G en %F AIHPC_2019__36_3_585_0
Matano, Hiroshi; Mori, Yoichiro; Nara, Mitsunori. Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 585-626. doi : 10.1016/j.anihpc.2018.07.003. https://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/
[1] Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen–Cahn equation, Proc. R. Soc. Edinb., Sect. A, Volume 140 (2010), pp. 673–706 | DOI | MR | Zbl
[2] Bounds for the fundamental solution of a parabolic equation, Bull. Am. Math. Soc., Volume 73 (1967), pp. 890–896 | DOI | MR | Zbl
[3] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33–76 | DOI | MR | Zbl
[4] Anisotropic and crystalline mean curvature flow, A Sampler of Riemann–Finsler Geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, Cambridge, 2004, pp. 49–82 | MR | Zbl
[5] Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., Volume 25 (1996), pp. 537–566 | DOI | MR | Zbl
[6] Some results on surface measures in calculus of variations, Ann. Mat. Pura Appl. (4), Volume 170 (1996), pp. 329–357 | DOI | MR | Zbl
[7] Generalized travelling waves for reaction–diffusion equations, Perspectives in Nonlinear Partial Differential Equations. In Honor of H. Brezis, Contemp. Math., vol. 446, Amer. Math. Soc., 2007, pp. 101–123 | MR | Zbl
[8] Generalized transition waves and their properties, Commun. Pure Appl. Math., Volume 65 (2012), pp. 592–648 | DOI | MR | Zbl
[9] Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997), pp. 125–160 | MR | Zbl
[10] Anisotropic phase field equations of arbitrary order, Discrete Contin. Dyn. Syst., Ser. S, Volume 4 (2011), pp. 311–350 | MR | Zbl
[11] Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 349–372 | DOI | MR | Zbl
[12] The limit of the anisotropic double-obstacle Allen–Cahn equation, Proc. R. Soc. Edinb., Sect. A, Volume 126 (1996), pp. 1217–1234 | DOI | MR | Zbl
[13] The limit of the fully anisotropic double-obstacle Allen–Cahn equation in the nonsmooth case, SIAM J. Math. Anal., Volume 28 (1997), pp. 274–303 | DOI | MR | Zbl
[14] The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977), pp. 335–361 | MR | Zbl
[15] The Wulff theorem revisited, Proc. R. Soc. Lond. Ser. A, Volume 432 (1991), pp. 125–145 | MR | Zbl
[16] Motion by mean curvature from the Ginzburg–Landau ∇ϕ-interface model, Commun. Math. Phys., Volume 185 (1997), pp. 1–36 | DOI | MR | Zbl
[17] On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Physica D, Volume 115 (1998), pp. 87–108 | DOI | MR | Zbl
[18] On a uniform approximation of motion by anisotropic curvature by the Allen–Cahn equations, Interfaces Free Bound., Volume 8 (2006), pp. 317–348 | DOI | MR | Zbl
[19] Bistable transition fronts in
[20] Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Jpn., Volume 51 (1999), pp. 267–308 | DOI | MR | Zbl
[21] Spherically symmetric solutions of a reaction–diffusion equation, J. Differ. Equ., Volume 49 (1983), pp. 142–169 | MR | Zbl
[22] Asymptotic behaviour of a reaction–diffusion equation in higher space dimensions, Rocky Mt. J. Math., Volume 13 (1983), pp. 355–364 | MR | Zbl
[23] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monograph, vol. 23, Amer. Math. Soc., Providence, R.I., 1968 | DOI | MR | Zbl
[24] Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI | MR | Zbl
[25] Large time behavior of disturbed planar fronts in the Allen–Cahn equation, J. Differ. Equ., Volume 251 (2011), pp. 3522–3557 | DOI | MR | Zbl
[26] Stability of planar waves in the Allen–Cahn equations, Commun. Partial Differ. Equ., Volume 34 (2009), pp. 976–1002 | DOI | MR | Zbl
[27] Front propagation for nonlinear diffusion equations on the hyperbolic space, J. Eur. Math. Soc., Volume 17 (2015), pp. 1199–1227 | DOI | MR | Zbl
[28] Phase-field models for anisotropic interfaces, Phys. Rev. E, Volume 48 (1993), pp. 2016–2024 | DOI | MR
[29] The Wulff shape as the asymptotic limit of a growing crystalline interface, Asian J. Math., Volume 1 (1997), pp. 560–571 | DOI | MR | Zbl
[30] The Freidlin–Gärtner formula for general reaction terms, Adv. Math., Volume 317 (2017), pp. 267–298 | DOI | MR | Zbl
[31] Stability of radially symmetric travelling waves in reaction–diffusion equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004), pp. 341–379 | DOI | Numdam | MR | Zbl
[32] Motion of a set by the curvature of its boundary, J. Differ. Equ., Volume 101 (1993), pp. 313–372 | DOI | MR | Zbl
[33] Generalized motion of a front propagating along its normal direction: a differential games approach, Nonlinear Anal., Volume 22 (1994), pp. 1247–1262 | DOI | MR | Zbl
[34] Nearly spherically symmetric expanding fronts in a bistable reaction–diffusion equation, J. Dyn. Differ. Equ., Volume 13 (2001), pp. 323–353 | DOI | MR | Zbl
Cité par Sources :