Nous considérons le problème de Cauchy pour l'équation d'Allen–Cahn (de moyenne non nulle) anisotropique dans avec , et étudions le comportement en temps grand des solutions propageantes. Nous montrons, sous des hypothèses assez faibles sur la donnée initiale, que la solution développe un véritable front de propagation dont la position peut être approchée d'assez près, en temps grand, par une forme de Wulff en expansion. Un tel comportement peut être attendu formellement, et il existe aussi dans la littérature certaines études rigoureuses sur des problèmes analogues. Le principal objectif de cet article est d'établir des résultats d'approximation plus fins que ce qui était connu auparavant. Plus précisément, la distance de Hausdorff entre un ensemble de niveau de la solution et la forme de Wulff en expansion reste bornée uniformément en temps grand. De plus, chaque ensemble de niveau devient en temps fini une hypersurface régulière, quelque soit l'irrégularité de sa configuration initiale, et le mouvement de cette hypersurface est régi (approximativement) par le flot de courbure moyenne anisotropique , avec une marge d'erreur petite. Nous prouvons aussi la rigidité asymptotique du profil de la solution, c'est-à-dire qu'il converge, à proximité du front et quand le temps tend vers l'infini, vers le profil de l'onde progressive. Une extension au cas anisotropique d'un théorème de type Liouville de Berestycki et Hamel (2007), portant sur les solutions entières de l'équation d'Allen–Cahn, joue un rôle clé dans la preuve de ce dernier résultat, ainsi que de la régularité des ensembles de niveau.
We consider the Cauchy problem for the anisotropic (unbalanced) Allen–Cahn equation on with and study the large time behavior of the solutions with spreading fronts. We show, under very mild assumptions on the initial data, that the solution develops a well-formed front whose position is closely approximated by the expanding Wulff shape for all large times. Such behavior can naturally be expected on a formal level and there are also some rigorous studies in the literature on related problems, but we will establish approximation results that are more refined than what has been known before. More precisely, the Hausdorff distance between the level set of the solution and the expanding Wulff shape remains uniformly bounded for all large times. Furthermore, each level set becomes a smooth hypersurface in finite time no matter how irregular the initial configuration may be, and the motion of this hypersurface is approximately subject to the anisotropic mean curvature flow with a small error margin. We also prove the eventual rigidity of the solution profile at the front, meaning that it converges locally to the traveling wave profile everywhere near the front as time goes to infinity. In proving this last result as well as the smoothness of the level surfaces, an anisotropic extension of the Liouville type theorem of Berestycki and Hamel (2007) for entire solutions of the Allen–Cahn equation plays a key role.
Mots-clés : Anisotropic Allen–Cahn equation, Spreading front, Stability, Anisotropic mean curvature flow, Wulff shape
@article{AIHPC_2019__36_3_585_0, author = {Matano, Hiroshi and Mori, Yoichiro and Nara, Mitsunori}, title = {Asymptotic behavior of spreading fronts in the anisotropic {Allen{\textendash}Cahn} equation on $ {\mathbb{R}}^{n}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {585--626}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.07.003}, mrnumber = {3926517}, zbl = {1411.35161}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/} }
TY - JOUR AU - Matano, Hiroshi AU - Mori, Yoichiro AU - Nara, Mitsunori TI - Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 585 EP - 626 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/ DO - 10.1016/j.anihpc.2018.07.003 LA - en ID - AIHPC_2019__36_3_585_0 ER -
%0 Journal Article %A Matano, Hiroshi %A Mori, Yoichiro %A Nara, Mitsunori %T Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 585-626 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/ %R 10.1016/j.anihpc.2018.07.003 %G en %F AIHPC_2019__36_3_585_0
Matano, Hiroshi; Mori, Yoichiro; Nara, Mitsunori. Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on $ {\mathbb{R}}^{n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 585-626. doi : 10.1016/j.anihpc.2018.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.003/
[1] Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen–Cahn equation, Proc. R. Soc. Edinb., Sect. A, Volume 140 (2010), pp. 673–706 | DOI | MR | Zbl
[2] Bounds for the fundamental solution of a parabolic equation, Bull. Am. Math. Soc., Volume 73 (1967), pp. 890–896 | DOI | MR | Zbl
[3] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33–76 | DOI | MR | Zbl
[4] Anisotropic and crystalline mean curvature flow, A Sampler of Riemann–Finsler Geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, Cambridge, 2004, pp. 49–82 | MR | Zbl
[5] Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., Volume 25 (1996), pp. 537–566 | DOI | MR | Zbl
[6] Some results on surface measures in calculus of variations, Ann. Mat. Pura Appl. (4), Volume 170 (1996), pp. 329–357 | DOI | MR | Zbl
[7] Generalized travelling waves for reaction–diffusion equations, Perspectives in Nonlinear Partial Differential Equations. In Honor of H. Brezis, Contemp. Math., vol. 446, Amer. Math. Soc., 2007, pp. 101–123 | MR | Zbl
[8] Generalized transition waves and their properties, Commun. Pure Appl. Math., Volume 65 (2012), pp. 592–648 | DOI | MR | Zbl
[9] Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997), pp. 125–160 | MR | Zbl
[10] Anisotropic phase field equations of arbitrary order, Discrete Contin. Dyn. Syst., Ser. S, Volume 4 (2011), pp. 311–350 | MR | Zbl
[11] Interface conditions for a phase field model with anisotropic and non-local interactions, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 349–372 | DOI | MR | Zbl
[12] The limit of the anisotropic double-obstacle Allen–Cahn equation, Proc. R. Soc. Edinb., Sect. A, Volume 126 (1996), pp. 1217–1234 | DOI | MR | Zbl
[13] The limit of the fully anisotropic double-obstacle Allen–Cahn equation in the nonsmooth case, SIAM J. Math. Anal., Volume 28 (1997), pp. 274–303 | DOI | MR | Zbl
[14] The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977), pp. 335–361 | MR | Zbl
[15] The Wulff theorem revisited, Proc. R. Soc. Lond. Ser. A, Volume 432 (1991), pp. 125–145 | MR | Zbl
[16] Motion by mean curvature from the Ginzburg–Landau ∇ϕ-interface model, Commun. Math. Phys., Volume 185 (1997), pp. 1–36 | DOI | MR | Zbl
[17] On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Physica D, Volume 115 (1998), pp. 87–108 | DOI | MR | Zbl
[18] On a uniform approximation of motion by anisotropic curvature by the Allen–Cahn equations, Interfaces Free Bound., Volume 8 (2006), pp. 317–348 | DOI | MR | Zbl
[19] Bistable transition fronts in , Adv. Math., Volume 289 (2016), pp. 279–344 | DOI | MR | Zbl
[20] Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Jpn., Volume 51 (1999), pp. 267–308 | DOI | MR | Zbl
[21] Spherically symmetric solutions of a reaction–diffusion equation, J. Differ. Equ., Volume 49 (1983), pp. 142–169 | MR | Zbl
[22] Asymptotic behaviour of a reaction–diffusion equation in higher space dimensions, Rocky Mt. J. Math., Volume 13 (1983), pp. 355–364 | MR | Zbl
[23] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monograph, vol. 23, Amer. Math. Soc., Providence, R.I., 1968 | DOI | MR | Zbl
[24] Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI | MR | Zbl
[25] Large time behavior of disturbed planar fronts in the Allen–Cahn equation, J. Differ. Equ., Volume 251 (2011), pp. 3522–3557 | DOI | MR | Zbl
[26] Stability of planar waves in the Allen–Cahn equations, Commun. Partial Differ. Equ., Volume 34 (2009), pp. 976–1002 | DOI | MR | Zbl
[27] Front propagation for nonlinear diffusion equations on the hyperbolic space, J. Eur. Math. Soc., Volume 17 (2015), pp. 1199–1227 | DOI | MR | Zbl
[28] Phase-field models for anisotropic interfaces, Phys. Rev. E, Volume 48 (1993), pp. 2016–2024 | DOI | MR
[29] The Wulff shape as the asymptotic limit of a growing crystalline interface, Asian J. Math., Volume 1 (1997), pp. 560–571 | DOI | MR | Zbl
[30] The Freidlin–Gärtner formula for general reaction terms, Adv. Math., Volume 317 (2017), pp. 267–298 | DOI | MR | Zbl
[31] Stability of radially symmetric travelling waves in reaction–diffusion equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004), pp. 341–379 | DOI | Numdam | MR | Zbl
[32] Motion of a set by the curvature of its boundary, J. Differ. Equ., Volume 101 (1993), pp. 313–372 | DOI | MR | Zbl
[33] Generalized motion of a front propagating along its normal direction: a differential games approach, Nonlinear Anal., Volume 22 (1994), pp. 1247–1262 | DOI | MR | Zbl
[34] Nearly spherically symmetric expanding fronts in a bistable reaction–diffusion equation, J. Dyn. Differ. Equ., Volume 13 (2001), pp. 323–353 | DOI | MR | Zbl
Cité par Sources :