Hessian estimates for convex solutions to quadratic Hessian equation
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 451-454.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous dérivons des estimations de Hessian pour des solutions convexes à l'équation de Hessian quadratique par argument de compacité.

We derive Hessian estimates for convex solutions to quadratic Hessian equation by compactness argument.

DOI : 10.1016/j.anihpc.2018.07.001
Mots-clés : Nonlinear elliptic equations, A priori estimates, Sigma-2 equation, Legendre–Lewy transformation
@article{AIHPC_2019__36_2_451_0,
     author = {McGonagle, Matt and Song, Chong and Yuan, Yu},
     title = {Hessian estimates for convex solutions to quadratic {Hessian} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {451--454},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.07.001},
     mrnumber = {3913193},
     zbl = {1423.35107},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/}
}
TY  - JOUR
AU  - McGonagle, Matt
AU  - Song, Chong
AU  - Yuan, Yu
TI  - Hessian estimates for convex solutions to quadratic Hessian equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 451
EP  - 454
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/
DO  - 10.1016/j.anihpc.2018.07.001
LA  - en
ID  - AIHPC_2019__36_2_451_0
ER  - 
%0 Journal Article
%A McGonagle, Matt
%A Song, Chong
%A Yuan, Yu
%T Hessian estimates for convex solutions to quadratic Hessian equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 451-454
%V 36
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/
%R 10.1016/j.anihpc.2018.07.001
%G en
%F AIHPC_2019__36_2_451_0
McGonagle, Matt; Song, Chong; Yuan, Yu. Hessian estimates for convex solutions to quadratic Hessian equation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 451-454. doi : 10.1016/j.anihpc.2018.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/

[1] Bao, Jiguang; Chen, Jingyi; Guan, Bo; Ji, Min Liouville property and regularity of a Hessian quotient equation, Am. J. Math., Volume 125 (2003) no. 2, pp. 301–316 | MR | Zbl

[2] Caffarelli, Luis; Guan, Pengfei; Ma, Xi-Nan A constant rank theorem for solutions of fully nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 12, pp. 1769–1791 | MR | Zbl

[3] Chang, Sun-Yung Alice; Yuan, Yu A Liouville problem for the sigma-2 equation, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 2, pp. 659–664 | MR | Zbl

[4] Chou, Kai-Seng; Wang, Xu-Jia A variational theory of the Hessian equation, Commun. Pure Appl. Math., Volume 54 (2001), pp. 1029–1064 | MR | Zbl

[5] Guan, Pengfei; Qiu, Guohuan Interior C2 regularity of convex solutions to prescribing scalar curvature equations, 2017 (preprint) | arXiv | MR | Zbl

[6] Heinz, Erhard On elliptic Monge–Ampère equations and Weyl's embedding problem, J. Anal. Math., Volume 7 (1959), pp. 1–52 | MR | Zbl

[7] Lewy, Hans A priori limitations for solutions of Monge–Ampère equations. II, Trans. Am. Math. Soc., Volume 41 (1937), pp. 365–374 | MR | Zbl

[8] Pogorelov, Aleksei Vasil'evich The Minkowski Multidimensional Problem, Scripta Series in Mathematics, V. H. Winston & Sons/Halsted Press [John Wiley & Sons], Washington, DC/New York–Toronto–London, 1978 (translated from the Russian by Vladimir Oliker. Introduction by Louis Nirenberg) | MR | Zbl

[9] Qiu, Guohuan Interior Hessian estimates for sigma-2 equations, 2017 (preprint) | arXiv

[10] Trudinger, Neil S. Weak solutions of Hessian equations, Commun. Partial Differ. Equ., Volume 22 (1997) no. 7–8, pp. 1251–1261 | MR | Zbl

[11] Urbas, John Some interior regularity results for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 11 (2000), pp. 1–31 | MR | Zbl

[12] Urbas, John An interior second derivative bound for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 12 (2001), pp. 417–431 | MR | Zbl

[13] Warren, Micah; Yuan, Yu Hessian estimates for the sigma-2 equation in dimension three, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 305–321 | MR | Zbl

Cité par Sources :