Nous dérivons des estimations de Hessian pour des solutions convexes à l'équation de Hessian quadratique par argument de compacité.
We derive Hessian estimates for convex solutions to quadratic Hessian equation by compactness argument.
@article{AIHPC_2019__36_2_451_0, author = {McGonagle, Matt and Song, Chong and Yuan, Yu}, title = {Hessian estimates for convex solutions to quadratic {Hessian} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {451--454}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.07.001}, mrnumber = {3913193}, zbl = {1423.35107}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/} }
TY - JOUR AU - McGonagle, Matt AU - Song, Chong AU - Yuan, Yu TI - Hessian estimates for convex solutions to quadratic Hessian equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 451 EP - 454 VL - 36 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/ DO - 10.1016/j.anihpc.2018.07.001 LA - en ID - AIHPC_2019__36_2_451_0 ER -
%0 Journal Article %A McGonagle, Matt %A Song, Chong %A Yuan, Yu %T Hessian estimates for convex solutions to quadratic Hessian equation %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 451-454 %V 36 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/ %R 10.1016/j.anihpc.2018.07.001 %G en %F AIHPC_2019__36_2_451_0
McGonagle, Matt; Song, Chong; Yuan, Yu. Hessian estimates for convex solutions to quadratic Hessian equation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 451-454. doi : 10.1016/j.anihpc.2018.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.07.001/
[1] Liouville property and regularity of a Hessian quotient equation, Am. J. Math., Volume 125 (2003) no. 2, pp. 301–316 | MR | Zbl
[2] A constant rank theorem for solutions of fully nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 12, pp. 1769–1791 | MR | Zbl
[3] A Liouville problem for the sigma-2 equation, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 2, pp. 659–664 | MR | Zbl
[4] A variational theory of the Hessian equation, Commun. Pure Appl. Math., Volume 54 (2001), pp. 1029–1064 | MR | Zbl
[5] Interior regularity of convex solutions to prescribing scalar curvature equations, 2017 (preprint) | arXiv | MR | Zbl
[6] On elliptic Monge–Ampère equations and Weyl's embedding problem, J. Anal. Math., Volume 7 (1959), pp. 1–52 | MR | Zbl
[7] A priori limitations for solutions of Monge–Ampère equations. II, Trans. Am. Math. Soc., Volume 41 (1937), pp. 365–374 | MR | Zbl
[8] The Minkowski Multidimensional Problem, Scripta Series in Mathematics, V. H. Winston & Sons/Halsted Press [John Wiley & Sons], Washington, DC/New York–Toronto–London, 1978 (translated from the Russian by Vladimir Oliker. Introduction by Louis Nirenberg) | MR | Zbl
[9] Interior Hessian estimates for sigma-2 equations, 2017 (preprint) | arXiv
[10] Weak solutions of Hessian equations, Commun. Partial Differ. Equ., Volume 22 (1997) no. 7–8, pp. 1251–1261 | MR | Zbl
[11] Some interior regularity results for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 11 (2000), pp. 1–31 | MR | Zbl
[12] An interior second derivative bound for solutions of Hessian equations, Calc. Var. Partial Differ. Equ., Volume 12 (2001), pp. 417–431 | MR | Zbl
[13] Hessian estimates for the sigma-2 equation in dimension three, Commun. Pure Appl. Math., Volume 62 (2009) no. 3, pp. 305–321 | MR | Zbl
Cité par Sources :