Stable ground states for the HMF Poisson model
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 217-255.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we prove the nonlinear orbital stability of a large class of steady state solutions to the Hamiltonian Mean Field (HMF) system with a Poisson interaction potential. These steady states are obtained as minimizers of an energy functional under one, two or infinitely many constraints. The singularity of the Poisson potential prevents from a direct run of the general strategy in [16,19] which was based on generalized rearrangement techniques, and which has been recently extended to the case of the usual (smooth) cosine potential [17]. Our strategy is rather based on variational techniques. However, due to the boundedness of the space domain, our variational problems do not enjoy the usual scaling invariances which are, in general, very important in the analysis of variational problems. To replace these scaling arguments, we introduce new transformations which, although specific to our context, remain somehow in the same spirit of rearrangements tools introduced in the references above. In particular, these transformations allow for the incorporation of an arbitrary number of constraints, and yield a stability result for a large class of steady states.

DOI : 10.1016/j.anihpc.2018.05.002
Mots-clés : Kinetic equations, Orbital stability, Variational methods, Rearrangement inequalities
@article{AIHPC_2019__36_1_217_0,
     author = {Fontaine, Marine and Lemou, Mohammed and M\'ehats, Florian},
     title = {Stable ground states for the {HMF} {Poisson} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {217--255},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.05.002},
     mrnumber = {3906871},
     zbl = {1416.37061},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.002/}
}
TY  - JOUR
AU  - Fontaine, Marine
AU  - Lemou, Mohammed
AU  - Méhats, Florian
TI  - Stable ground states for the HMF Poisson model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 217
EP  - 255
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.002/
DO  - 10.1016/j.anihpc.2018.05.002
LA  - en
ID  - AIHPC_2019__36_1_217_0
ER  - 
%0 Journal Article
%A Fontaine, Marine
%A Lemou, Mohammed
%A Méhats, Florian
%T Stable ground states for the HMF Poisson model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 217-255
%V 36
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.002/
%R 10.1016/j.anihpc.2018.05.002
%G en
%F AIHPC_2019__36_1_217_0
Fontaine, Marine; Lemou, Mohammed; Méhats, Florian. Stable ground states for the HMF Poisson model. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 217-255. doi : 10.1016/j.anihpc.2018.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.05.002/

[1] Antoni, Mickael; Ruffo, Stefano Clustering and relaxation in Hamiltonian long-range dynamics, Phys. Rev. E, Volume 52 (September 1995), pp. 2361–2374

[2] Antoniazzi, A.; Fanelli, D.; Ruffo, S.; Yamaguchi, Y.Y. Nonequilibrium tricritical point in a system with long-range interactions, Phys. Rev. Lett., Volume 99 (July 2007) no. 4 | DOI

[3] Barré, Julien; Bouchet, Freddy; Dauxois, Thierry; Ruffo, Stefano; Yamaguchi, Yoshiyuki Y. The Vlasov equation and the Hamiltonian mean-field model, Physica A, Volume 365 (2006), pp. 177–183

[4] Barré, Julien; Olivetti, Alain; Yamaguchi, Yoshiyuki Y. Dynamics of perturbations around inhomogeneous backgrounds in the HMF model, J. Stat. Mech. Theory Exp., Volume 2010 (2010) no. 08

[5] Barré, Julien; Olivetti, Alain; Yamaguchi, Yoshiyuki Y. Algebraic damping in the one-dimensional Vlasov equation, J. Phys. A, Math. Theor., Volume 44 (2011) | MR | Zbl

[6] Barré, Julien; Yamaguchi, Yoshiyuki On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation – case of the Hamiltonian mean-field model, J. Math. Phys., Volume 56 (August 2015) | MR | Zbl

[7] Barré, Julien; Yamaguchi, Yoshiyuki Y. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models, Phys. Rev. E, Volume 79 (March 2009)

[8] Brezis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., Volume 88 (1983), pp. 486–490 | DOI | MR | Zbl

[9] Chavanis, P.-H.; Campa, A. Inhomogeneous Tsallis distributions in the HMF model, Eur. Phys. J. B, Volume 76 (August 2010), pp. 581–611 | Zbl

[10] Chavanis, P.H.; Vatteville, J.; Bouchet, F. Dynamics and thermodynamics of a simple model similar to self-gravitating systems: the HMF model, Eur. Phys. J. B, Volume 46 (July 2005), pp. 61–99

[11] Chavanis, Pierre-Henri; Delfini, Luca Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 81 (2010) no. 5 | MR

[12] Desvillettes, I.; Villani, C. On the spatially homogeneous Landau equation for hard potentials, part I: existence, uniqueness and smoothness, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 179–259 | MR | Zbl

[13] Edwards, R.E. Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, 1965 | MR | Zbl

[14] Faou, E.; Rousset, F. Landau damping in Sobolev spaces for the Vlasov-HMF model, Arch. Ration. Mech. Anal., Volume 219 (February 2016), pp. 887–902 | DOI | MR | Zbl

[15] Kavian, O. Introduction à la théorie des points critiques et application aux problèmes elliptiques, Springer, 1993 | MR | Zbl

[16] Lemou, M. Extended rearrangement inequalities and applications to some quantitative stability results, Commun. Math. Phys., Volume 348 (December 2016), pp. 695–727 | DOI | MR | Zbl

[17] Lemou, Mohammed; Luz, Ana Maria; Méhats, Florian Nonlinear stability criteria for the HMF model, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 353–380 | MR | Zbl

[18] Lemou, Mohammed; Méhats, Florian; Raphael, Pierre The orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, Arch. Ration. Mech. Anal., Volume 189 (2008) no. 3, pp. 425–468 | MR | Zbl

[19] Lemou, Mohammed; Méhats, Florian; Raphael, Pierre Orbital stability of spherical galactic models, Invent. Math., Volume 187 (2012) no. 1, pp. 145–194 | MR | Zbl

[20] Lemou, Mohammed; Méhats, Florian; Rigault, Cyril Stable ground states and self-similar blow-up solutions for the gravitational Vlasov–Manev system, SIAM J. Math. Anal., Volume 44 (2012) no. 6, pp. 3928–3968 | MR | Zbl

[21] Lieb, E.H.; Loss, M. Analysis, American Mathematical Society, 1997 | MR | Zbl

[22] Messer, Joachim; Spohn, Herbert Statistical mechanics of the isothermal Lane–Emden equation, J. Stat. Phys., Volume 29 (1982) no. 3, pp. 561–578 | MR

[23] Nagai, Toshitaka; Senba, Takasi Proceedings of the Second World Congress of Nonlinear Analysts, Nonlinear Anal., Theory Methods Appl., Volume 30 (1997) no. 6, pp. 3837–3842 | MR | Zbl

[24] Ogawa, S. Spectral and formal stability criteria of spatially inhomogeneous stationary solutions to the Vlasov equation for the Hamiltonian mean-field model, Phys. Rev. E, Volume 87 (June 2013) no. 6 | DOI

[25] Ogawa, S.; Yamaguchi, Y.Y. Precise determination of the nonequilibrium tricritical point based on Lynden–Bell theory in the Hamiltonian mean-field model, Phys. Rev. E, Volume 84 (2011) | DOI

[26] Staniscia, F.; Chavanis, P.H.; De Ninno, G. Out-of-equilibrium phase transitions in the HMF model: a closer look, Phys. Rev. E, Volume 83 (2011) | DOI

[27] Unterreiter, Andreas; Arnold, Anton; Markowich, Peter; Toscani, Giuseppe On generalized Csiszár–Kullback inequalities, Monatshefte Math., Volume 131 (December 2000) no. 3, pp. 235–253 | MR | Zbl

[28] Yamaguchi, Y.Y.; Barré, Julien; Bouchet, Freddy; Dauxois, Thierry; Ruffo, S. Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model, Physica A, Volume 337 (2004), pp. 36–66 | DOI

[29] Yamaguchi, Y.Y. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein–Greene–Kruskal waves, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 84 (July 2011)

Cité par Sources :