Interior regularity for fractional systems
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 165-180.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the regularity of solutions of elliptic fractional systems of order 2s, s(0,1), where the right hand side f depends on a nonlocal gradient and has the same scaling properties as the nonlocal operator. Under some structural conditions on the system we prove interior Hölder estimates in the spirit of [1]. Our results are stable in s allowing us to recover the classic results for elliptic systems due to S. Hildebrandt and K. Widman [11] and M. Wiegner [19].

DOI : 10.1016/j.anihpc.2018.04.004
Mots-clés : A priori estimates, Nonlocal semilinear systems, Fractional harmonic maps
@article{AIHPC_2019__36_1_165_0,
     author = {Caffarelli, Luis and D\'avila, Gonzalo},
     title = {Interior regularity for fractional systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {165--180},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.04.004},
     mrnumber = {3906869},
     zbl = {1411.35111},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.004/}
}
TY  - JOUR
AU  - Caffarelli, Luis
AU  - Dávila, Gonzalo
TI  - Interior regularity for fractional systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 165
EP  - 180
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.004/
DO  - 10.1016/j.anihpc.2018.04.004
LA  - en
ID  - AIHPC_2019__36_1_165_0
ER  - 
%0 Journal Article
%A Caffarelli, Luis
%A Dávila, Gonzalo
%T Interior regularity for fractional systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 165-180
%V 36
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.004/
%R 10.1016/j.anihpc.2018.04.004
%G en
%F AIHPC_2019__36_1_165_0
Caffarelli, Luis; Dávila, Gonzalo. Interior regularity for fractional systems. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 165-180. doi : 10.1016/j.anihpc.2018.04.004. http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.004/

[1] Caffarelli, L.A. Regularity theorems for weak solutions of some nonlinear systems, Commun. Pure Appl. Math., Volume 35 (1982) no. 6, pp. 833–838 | DOI | MR | Zbl

[2] Caffarelli, Luis; Silvestre, Luis Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 5, pp. 597–638 | MR | Zbl

[3] Caffarelli, Luis; Silvestre, Luis The Evans–Krylov theorem for nonlocal fully nonlinear equations, Ann. Math. (2011) no. 2, pp. 1163–1187 | MR | Zbl

[4] Da Lio, F. Fractional harmonic maps into manifolds in odd dimension n>1 , Calc. Var. Partial Differ. Equ., Volume 48 (2013) no. 3–4, pp. 421–445 | MR | Zbl

[5] Da Lio, F.; Rivière, T. Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, Volume 4 (2011) no. 1, pp. 149–190 | MR | Zbl

[6] Da Lio, F.; Rivière, T. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., Volume 227 (2011) no. 3, pp. 1300–1348 | DOI | MR | Zbl

[7] Da Lio, F.; Schikorra, A. n/p-Harmonic maps: regularity for the sphere case, Adv. Calc. Var., Volume 7 (2014) no. 1, pp. 1–26 (English summary) | DOI | MR | Zbl

[8] Di Castro, A.; Kuusi, T.; Palatucci, G. Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (15 September 2014) no. 6, pp. 1807–1836 | DOI | MR | Zbl

[9] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | MR | Zbl

[10] Hildebrandt, Stefan; Kaul, Helmut; Widman, Kjell-Ove An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math., Volume 138 (1977) no. 1–2, pp. 1–16 | MR | Zbl

[11] Hildebrandt, Stefan; Widman, Kjell-Ove On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1977), pp. 145–178 | Numdam | MR | Zbl

[12] Kassmann, M. On regularity for Beurling–Deny type Dirichlet forms, Potential Anal., Volume 19 (August 2003) no. 1, pp. 69–87 | DOI | MR | Zbl

[13] M. Kassmann, Harnack inequalities and Hölder regularity estimates for nonlocal operators revisited, available as SFB 701-preprint no. 11015, 2011.

[14] Millot, Vincent; Sire, Yannick On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125–210 | MR | Zbl

[15] Schikorra, A. Regularity of n/2-harmonic maps into spheres, J. Differ. Equ., Volume 252 (2012) no. 2, pp. 1862–1911 | DOI | MR | Zbl

[16] Schikorra, A. Integro-differential harmonic maps into spheres, Commun. Partial Differ. Equ., Volume 40 (2015) no. 3, pp. 506–539 (English summary) | DOI | MR | Zbl

[17] Schikorra, A. ε-regularity for systems involving non-local, antisymmetric operators, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3531–3570 (English summary) | DOI | MR | Zbl

[18] Serra, Joaquim Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3571–3601 | MR | Zbl

[19] Wiegner, Michael Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z., Volume 147 (1976) no. 1, pp. 21–28 | MR | Zbl

Cité par Sources :