We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrödinger equations on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This allows to obtain a priori energy estimates on the Sobolev norms of the solutions.
@article{AIHPC_2019__36_1_119_0, author = {Feola, R. and Iandoli, F.}, title = {Local well-posedness for quasi-linear {NLS} with large {Cauchy} data on the circle}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {119--164}, publisher = {Elsevier}, volume = {36}, number = {1}, year = {2019}, doi = {10.1016/j.anihpc.2018.04.003}, mrnumber = {3906868}, zbl = {1430.35207}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.003/} }
TY - JOUR AU - Feola, R. AU - Iandoli, F. TI - Local well-posedness for quasi-linear NLS with large Cauchy data on the circle JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 119 EP - 164 VL - 36 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.003/ DO - 10.1016/j.anihpc.2018.04.003 LA - en ID - AIHPC_2019__36_1_119_0 ER -
%0 Journal Article %A Feola, R. %A Iandoli, F. %T Local well-posedness for quasi-linear NLS with large Cauchy data on the circle %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 119-164 %V 36 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.003/ %R 10.1016/j.anihpc.2018.04.003 %G en %F AIHPC_2019__36_1_119_0
Feola, R.; Iandoli, F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 119-164. doi : 10.1016/j.anihpc.2018.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.003/
[1] Gravity capillary standing water waves, Arch. Ration. Mech. Anal., Volume 217 (2015) no. 3, pp. 741–830 | DOI | MR | Zbl
[2] Control of water waves, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 3, pp. 657–745 | DOI | MR | Zbl
[3] Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ. (1986) | DOI | MR | Zbl
[4] Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) | DOI | Numdam | MR | Zbl
[5] Time quasi-periodic gravity water waves in finite depth, 2017 (preprint) | arXiv | MR | Zbl
[6] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014) | DOI | MR | Zbl
[7] KAM for autonomous quasilinear perturbations of KdV, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) | DOI | Numdam | MR | Zbl
[8] Controllability of quasi-linear Hamiltonian NLS equations, J. Differ. Equ. (2017) | DOI | MR | Zbl
[9] Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., Volume 3 (2006), pp. 507 | DOI | MR | Zbl
[10] Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions, 2017 (preprint) | arXiv
[11] Quasi-Periodic Standing Wave Solutions of Gravity-Capillary Water Waves, Memoirs of the American Math. Society, MEMO 891, 2016 (to appear) | arXiv | MR | Zbl
[12] Semilinear Schrödinger Equations, vol. 10, Courant Lecture Notes, 2003 | MR | Zbl
[13] Illposedness of a Schrödinger equation with derivative nonlinearity https://math.berkeley.edu/~mchrist/Papers/dnls.ps (preprint)
[14] A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein–Gordon equation on , Astérisque, Volume 341 (2012) | Numdam | MR | Zbl
[15] Quasi-Linear Perturbations of Hamiltonian Klein–Gordon Equations on Spheres, American Mathematical Society, 2015 | DOI | MR | Zbl
[16] KAM for a quasi-linear forced Hamiltonian NLS, 2015 (preprint) | arXiv
[17] Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differ. Equ. (2014) | DOI | MR | Zbl
[18] KAM for quasi-linear autonomous NLS, 2017 (preprint) | arXiv
[19] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367–478 | DOI | MR | Zbl
[20] The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math., Volume 158 (2004) no. 2, pp. 343–388 | DOI | MR | Zbl
[21] Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, vol. 5, Edizioni della Normale, 2008 | MR | Zbl
[22] Rapidly convergent iteration method and non-linear partial differential equations – i, Ann. Sc. Norm. Super. Pisa, Volume 20 (1966) no. 2, pp. 265–315 | Numdam | MR | Zbl
[23] Smooth solutions for a class of fully nonlinear Schrödinger type equations, Nonlinear Anal., Theory Methods Appl., Volume 45 (2001) no. 6, pp. 723–741 | DOI | MR | Zbl
[24] Tools for PDE, Amer. Math. Soc., 2007 | DOI
[25] KAM tori for reversible partial differential equations, Nonlinearity, Volume 24 (2011) | DOI | MR | Zbl
Cité par Sources :