Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 103-118.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Let u be a map from a Riemann surface M to a Riemannian manifold N and α>1, the α energy functional is defined as

Eα(u)=12M[(1+|u|2)α1]dV.

We call uα a sequence of Sacks–Uhlenbeck maps if uα are critical points of Eα and

supα>1Eα(uα)<.

In this paper, we show the energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps during blowing up, if the target N is a sphere SK1. The energy identity can be used to give an alternative proof of Perelman's result [15] that the Ricci flow from a compact orientable prime non-aspherical 3-dimensional manifold becomes extinct in finite time (cf. [3,4]).

DOI : 10.1016/j.anihpc.2018.04.002
Mots-clés : Energy identity, Sacks–Uhlenbeck map, Harmonic sphere
@article{AIHPC_2019__36_1_103_0,
     author = {Li, Jiayu and Zhu, Xiangrong},
     title = {Energy identity and necklessness for a sequence of {Sacks{\textendash}Uhlenbeck} maps to a sphere},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {103--118},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.04.002},
     mrnumber = {3906867},
     zbl = {1410.58004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/}
}
TY  - JOUR
AU  - Li, Jiayu
AU  - Zhu, Xiangrong
TI  - Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 103
EP  - 118
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/
DO  - 10.1016/j.anihpc.2018.04.002
LA  - en
ID  - AIHPC_2019__36_1_103_0
ER  - 
%0 Journal Article
%A Li, Jiayu
%A Zhu, Xiangrong
%T Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 103-118
%V 36
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/
%R 10.1016/j.anihpc.2018.04.002
%G en
%F AIHPC_2019__36_1_103_0
Li, Jiayu; Zhu, Xiangrong. Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 103-118. doi : 10.1016/j.anihpc.2018.04.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/

[1] Bethuel, F. A regularity result for solutions to the equation of surfaces of prescribed mean curvature, C. R. Acad. Sci., Ser. 1 Math., Volume 314 (1992) no. 13, pp. 1003–1007 (in French) | MR | Zbl

[2] Coifman, R.; Lions, P.L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247–286 | MR | Zbl

[3] Colding, T.H.; Minicozzi, W.P. II Width and finite extinction time of Ricci flow, Geom. Topol., Volume 12 (2008), pp. 2537–2586 | DOI | MR | Zbl

[4] Colding, T.H.; Minicozzi, W.P. II Estimates for the extinction time for the Ricci Flow on Certain 3-manifolds and a question of Perelman, J. Am. Math. Soc., Volume 18 (2005), pp. 561–569 | DOI | MR | Zbl

[5] Ding, W.; Tian, G. Energy identity for a class of approximate harmonic maps from surfaces, Commun. Anal. Geom., Volume 4 (1995), pp. 543–554 | MR | Zbl

[6] Grafakos, Loukas Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008 | MR | Zbl

[7] Hélein, F. Harmonic Maps, Conservation Laws and Moving Frames, Cambridge University Press, 2002 | MR | Zbl

[8] Jost, J. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Amer. Math. Soc., Providence, RI (1987), pp. 1094–1100 (Berkeley, Calif., 1986) | MR | Zbl

[9] Lamm, T. Energy identity for approximations of harmonic maps from surfaces, Trans. Am. Math. Soc., Volume 362 (2010) | DOI | MR | Zbl

[10] Li, J.; Zhu, X. Energy identity for the maps from a surface with tension field bounded in Lp , Pac. J. Math., Volume 260 (2012), pp. 181–195 | MR | Zbl

[11] Li, J.; Zhu, X. Small energy compactness for approximate harmonic mappings, Commun. Contemp. Math., Volume 13 (2011), pp. 741–763 | MR | Zbl

[12] Li, Y.; Wang, Y. A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck α -harmonic maps, Adv. Math., Volume 225 (2010), pp. 1134–1184 | MR | Zbl

[13] Li, Y.; Wang, Y. An example of a-harmonic map sequence for which energy identity is not true | arXiv

[14] Lin, F.; Wang, C. Harmonic and quasi-harmonic spheres II, Commun. Anal. Geom., Volume 10 (2002), pp. 341–375 | MR | Zbl

[15] G. Perelman, Finite extinction time for the solution to the Ricci flow on certain three-manifolds, preprint. | Zbl

[16] Price, P. A monotonicity formula for Yang–Mills fields, Manuscr. Math., Volume 43 (1983), pp. 131–166 | DOI | MR | Zbl

[17] Qing, J. On singularities of the heat flow for harmonic maps from surfaces into spheres, Commun. Anal. Geom., Volume 3 (1995), pp. 297–315 | DOI | MR | Zbl

[18] Qing, J.; Tian, G. Bubbling of the heat flows for harmonic maps from surfaces, Commun. Pure Appl. Math., Volume 50 (1997), pp. 295–310 | DOI | MR | Zbl

[19] Sacks, J.; Uhlenbeck, K. The existence of minimal immersions of 2-spheres, Ann. Math., Volume 113 (1981), pp. 1–24 | DOI | MR | Zbl

[20] Stein, M. Elias; Weiss, Guido Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971 | MR | Zbl

[21] Wente, H. An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318–344 | DOI | MR | Zbl

[22] Zhu, X. No neck for approximate harmonic maps to the sphere, Nonlinear Anal., Volume 75 (2012) no. 11, pp. 4339–4345 | MR | Zbl

[23] Zhu, X. Bubble tree for approximate harmonic maps, Proc. Am. Math. Soc., Volume 142 (2014) no. 8, pp. 2849–2857 | MR | Zbl

Cité par Sources :