Let u be a map from a Riemann surface M to a Riemannian manifold N and , the α energy functional is defined as
We call a sequence of Sacks–Uhlenbeck maps if are critical points of and
In this paper, we show the energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps during blowing up, if the target N is a sphere . The energy identity can be used to give an alternative proof of Perelman's result [15] that the Ricci flow from a compact orientable prime non-aspherical 3-dimensional manifold becomes extinct in finite time (cf. [3,4]).
@article{AIHPC_2019__36_1_103_0, author = {Li, Jiayu and Zhu, Xiangrong}, title = {Energy identity and necklessness for a sequence of {Sacks{\textendash}Uhlenbeck} maps to a sphere}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {103--118}, publisher = {Elsevier}, volume = {36}, number = {1}, year = {2019}, doi = {10.1016/j.anihpc.2018.04.002}, mrnumber = {3906867}, zbl = {1410.58004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/} }
TY - JOUR AU - Li, Jiayu AU - Zhu, Xiangrong TI - Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 103 EP - 118 VL - 36 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/ DO - 10.1016/j.anihpc.2018.04.002 LA - en ID - AIHPC_2019__36_1_103_0 ER -
%0 Journal Article %A Li, Jiayu %A Zhu, Xiangrong %T Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 103-118 %V 36 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/ %R 10.1016/j.anihpc.2018.04.002 %G en %F AIHPC_2019__36_1_103_0
Li, Jiayu; Zhu, Xiangrong. Energy identity and necklessness for a sequence of Sacks–Uhlenbeck maps to a sphere. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 103-118. doi : 10.1016/j.anihpc.2018.04.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.002/
[1] A regularity result for solutions to the equation of surfaces of prescribed mean curvature, C. R. Acad. Sci., Ser. 1 Math., Volume 314 (1992) no. 13, pp. 1003–1007 (in French) | MR | Zbl
[2] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247–286 | MR | Zbl
[3] Width and finite extinction time of Ricci flow, Geom. Topol., Volume 12 (2008), pp. 2537–2586 | DOI | MR | Zbl
[4] Estimates for the extinction time for the Ricci Flow on Certain 3-manifolds and a question of Perelman, J. Am. Math. Soc., Volume 18 (2005), pp. 561–569 | DOI | MR | Zbl
[5] Energy identity for a class of approximate harmonic maps from surfaces, Commun. Anal. Geom., Volume 4 (1995), pp. 543–554 | MR | Zbl
[6] Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008 | MR | Zbl
[7] Harmonic Maps, Conservation Laws and Moving Frames, Cambridge University Press, 2002 | MR | Zbl
[8] Proceedings of the International Congress of Mathematicians, vols. 1, 2, Amer. Math. Soc., Providence, RI (1987), pp. 1094–1100 (Berkeley, Calif., 1986) | MR | Zbl
[9] Energy identity for approximations of harmonic maps from surfaces, Trans. Am. Math. Soc., Volume 362 (2010) | DOI | MR | Zbl
[10] Energy identity for the maps from a surface with tension field bounded in , Pac. J. Math., Volume 260 (2012), pp. 181–195 | MR | Zbl
[11] Small energy compactness for approximate harmonic mappings, Commun. Contemp. Math., Volume 13 (2011), pp. 741–763 | MR | Zbl
[12] A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck -harmonic maps, Adv. Math., Volume 225 (2010), pp. 1134–1184 | MR | Zbl
[13] An example of a-harmonic map sequence for which energy identity is not true | arXiv
[14] Harmonic and quasi-harmonic spheres II, Commun. Anal. Geom., Volume 10 (2002), pp. 341–375 | MR | Zbl
[15] G. Perelman, Finite extinction time for the solution to the Ricci flow on certain three-manifolds, preprint. | Zbl
[16] A monotonicity formula for Yang–Mills fields, Manuscr. Math., Volume 43 (1983), pp. 131–166 | DOI | MR | Zbl
[17] On singularities of the heat flow for harmonic maps from surfaces into spheres, Commun. Anal. Geom., Volume 3 (1995), pp. 297–315 | DOI | MR | Zbl
[18] Bubbling of the heat flows for harmonic maps from surfaces, Commun. Pure Appl. Math., Volume 50 (1997), pp. 295–310 | DOI | MR | Zbl
[19] The existence of minimal immersions of 2-spheres, Ann. Math., Volume 113 (1981), pp. 1–24 | DOI | MR | Zbl
[20] Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971 | MR | Zbl
[21] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318–344 | DOI | MR | Zbl
[22] No neck for approximate harmonic maps to the sphere, Nonlinear Anal., Volume 75 (2012) no. 11, pp. 4339–4345 | MR | Zbl
[23] Bubble tree for approximate harmonic maps, Proc. Am. Math. Soc., Volume 142 (2014) no. 8, pp. 2849–2857 | MR | Zbl
Cité par Sources :