We consider a continuously differentiable curve in the space of real symplectic matrices, which is the solution of the following ODE:
Mots-clés : Floquet multipliers, Symplectic matrices, Krein type, Krein–Lyubarskii theorem, Bifurcation
@article{AIHPC_2019__36_1_75_0, author = {Chang, Yinshan and Long, Yiming and Wang, Jian}, title = {On bifurcation of eigenvalues along convex symplectic paths}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {75--102}, publisher = {Elsevier}, volume = {36}, number = {1}, year = {2019}, doi = {10.1016/j.anihpc.2018.04.001}, mrnumber = {3906866}, zbl = {1409.37058}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.001/} }
TY - JOUR AU - Chang, Yinshan AU - Long, Yiming AU - Wang, Jian TI - On bifurcation of eigenvalues along convex symplectic paths JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 75 EP - 102 VL - 36 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.001/ DO - 10.1016/j.anihpc.2018.04.001 LA - en ID - AIHPC_2019__36_1_75_0 ER -
%0 Journal Article %A Chang, Yinshan %A Long, Yiming %A Wang, Jian %T On bifurcation of eigenvalues along convex symplectic paths %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 75-102 %V 36 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.001/ %R 10.1016/j.anihpc.2018.04.001 %G en %F AIHPC_2019__36_1_75_0
Chang, Yinshan; Long, Yiming; Wang, Jian. On bifurcation of eigenvalues along convex symplectic paths. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 75-102. doi : 10.1016/j.anihpc.2018.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.04.001/
[1] Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 19, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl
[2] On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients, Am. Math. Soc. Transl., Volume 2 (1958) no. 8, pp. 143–181 | MR | Zbl
[3] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995 (reprint of the 1980 edition) | MR | Zbl
[4] A generalization of some investigations of A. M. Lyapunov on linear differential equations with periodic coefficients, Dokl. Akad. Nauk SSSR (N.S.), Volume 73 (1950), pp. 445–448 | MR | Zbl
[5] On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Akad. Nauk SSSR. Prikl. Mat. Meh., Volume 15 (1951), pp. 323–348 | MR
[6] Analytic properties of the multipliers of periodic canonical differential systems of positive type, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 26 (1962), pp. 549–572 | MR
[7] Krein's formula for indefinite multipliers in linear periodic Hamiltonian systems, J. Differ. Equ., Volume 230 (2006) no. 2, pp. 446–464 | DOI | MR | Zbl
[8] Bott formula of the Maslov-type index theory, Pac. J. Math., Volume 187 (1999) no. 1, pp. 113–149 | DOI | MR | Zbl
[9] Index Theory for Symplectic Paths with Applications, Progress in Mathematics, vol. 207, Birkhäuser Verlag, Basel, 2002 | DOI | MR | Zbl
[10] New aspects in the theory of stability of Hamiltonian systems, Commun. Pure Appl. Math., Volume 11 (1958), pp. 81–114 | DOI | MR | Zbl
[11] Linear Algebra via Exterior Products, 2010 lulu.com
[12] Linear Differential Equations with Periodic Coefficients. 1, 2, Halsted Press [John Wiley & Sons], New York–Toronto, Ont., 1975 (Israel Program for Scientific Translations, Jerusalem–London, translated from Russian by D. Louvish) | MR | Zbl
Cité par Sources :