Physical measures for the geodesic flow tangent to a transversally conformal foliation
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 27-51.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a transversally conformal foliation F of a closed manifold M endowed with a smooth Riemannian metric whose restriction to each leaf is negatively curved. We prove that it satisfies the following dichotomy. Either there is a transverse holonomy-invariant measure for F, or the foliated geodesic flow admits a finite number of physical measures, which have negative transverse Lyapunov exponents and whose basin covers a set full for the Lebesgue measure. We also give necessary and sufficient conditions for the foliated geodesic flow to be partially hyperbolic in the case where the foliation is transverse to a projective circle bundle over a closed hyperbolic surface.

DOI : 10.1016/j.anihpc.2018.03.009
Mots-clés : Ergodic theory, Foliations, Physical measures, Partially hyperbolic flows
@article{AIHPC_2019__36_1_27_0,
     author = {Alvarez, S\'ebastien and Yang, Jiagang},
     title = {Physical measures for the geodesic flow tangent to a transversally conformal foliation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {27--51},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.03.009},
     mrnumber = {3906864},
     zbl = {1404.53037},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.009/}
}
TY  - JOUR
AU  - Alvarez, Sébastien
AU  - Yang, Jiagang
TI  - Physical measures for the geodesic flow tangent to a transversally conformal foliation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 27
EP  - 51
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.009/
DO  - 10.1016/j.anihpc.2018.03.009
LA  - en
ID  - AIHPC_2019__36_1_27_0
ER  - 
%0 Journal Article
%A Alvarez, Sébastien
%A Yang, Jiagang
%T Physical measures for the geodesic flow tangent to a transversally conformal foliation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 27-51
%V 36
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.009/
%R 10.1016/j.anihpc.2018.03.009
%G en
%F AIHPC_2019__36_1_27_0
Alvarez, Sébastien; Yang, Jiagang. Physical measures for the geodesic flow tangent to a transversally conformal foliation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 27-51. doi : 10.1016/j.anihpc.2018.03.009. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.009/

[1] Alcalde Cuesta, F.; Dal'Bo, F.; Martínez, M.; Verjovsky, A. Minimal foliations by hyperbolic surfaces on 3-manifolds, 2015 (Preprint) | arXiv

[2] Alvarez, S. Mesures de Gibbs et mesures harmoniques pour les feuilletages aux feuilles courbées négativement, 2013 (Thèse de l'Université de Bourgogne)

[3] Alvarez, S. Harmonic measures and the foliated geodesic flow for foliations with negatively curved leaves, Ergod. Theory Dyn. Syst., Volume 36 (2016) no. 2, pp. 355–374 | DOI | MR | Zbl

[4] Alvarez, S. Gibbs u -states for the foliated geodesic flow and transverse invariant measures, Isr. J. Math., Volume 221 (2017) no. 2, pp. 869–940 | DOI | MR | Zbl

[5] Alvarez, S. Gibbs measures for foliated bundles with negatively curved leaves, Ergod. Theory Dyn. Syst. (2017) (in press) | DOI | MR | Zbl

[6] Alves, J.; Bonatti, C.; Viana, M. SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., Volume 140 (2000) no. 2, pp. 351–398 | DOI | MR | Zbl

[7] Araújo, V.; Pacifico, M.J. Three-Dimensional Flows, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 53, Springer, Heidelberg, 2010 (with a foreword by Marcelo Viana) | MR | Zbl

[8] Avila, A.; Viana, M. Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., Volume 181 (2010) no. 1, pp. 115–189 | DOI | MR | Zbl

[9] Bakhtin, Y.; Martínez, M. A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces, Ann. Inst. Henri Poincaré Probab. Stat., Volume 44 (2008) no. 6, pp. 1078–1089 | DOI | Numdam | MR | Zbl

[10] Ballmann, W. Lectures on Spaces of Nonpositive Curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995 (with an appendix by Misha Brin) | MR | Zbl

[11] Bonatti, C.; Díaz, L.; Viana, M. Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005 (A global geometric and probabilistic perspective, Mathematical Physics, III) | MR | Zbl

[12] Bonatti, C.; Eskin, A.; Wilkinson, A. Projective cocycles over SL(2,R) actions: measures invariant under the upper triangular group, 2017 (Preprint) | arXiv | MR | Zbl

[13] Bonatti, C.; Gómez-Mont, X.; Martínez, M. Foliated hyperbolicity and foliations with hyperbolic leaves, 2015 (Preprint) | arXiv | MR | Zbl

[14] Bonatti, C.; Gómez-Mont, X.; Vila-Freyer, R. Statistical behaviour of the leaves of Riccati foliations, Ergod. Theory Dyn. Syst., Volume 30 (2010) no. 1, pp. 67–96 | DOI | MR | Zbl

[15] Bonatti, C.; Viana, M. SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Isr. J. Math., Volume 115 (2000), pp. 157–193 | DOI | MR | Zbl

[16] Bowen, R.; Ruelle, D. The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975) no. 3, pp. 181–202 | DOI | MR | Zbl

[17] Brezis, H. Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (Théorie et applications) | MR | Zbl

[18] Camacho, C.; Lins Neto, A. Geometric Theory of Foliations, Birkhäuser Boston, Inc., Boston, MA, 1985 (translated from the Portuguese by Sue E. Goodman) | DOI | MR | Zbl

[19] Candel, A. Uniformization of surface laminations, Ann. Sci. Éc. Norm. Supér. (4), Volume 26 (1993) no. 4, pp. 489–516 | Numdam | MR | Zbl

[20] Deroin, B.; Kleptsyn, V. Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007) no. 4, pp. 1043–1105 | DOI | MR | Zbl

[21] Deroin, B.; Tholozan, N. Dominating surface group representations by Fuchsian ones, Int. Math. Res. Not. (2016) no. 13, pp. 4145–4166 | DOI | MR | Zbl

[22] Fornæss, J.E.; Sibony, N. Harmonic currents of finite energy and laminations, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 962–1003 | DOI | MR | Zbl

[23] Furstenberg, H. Noncommuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377–428 | DOI | MR | Zbl

[24] Garnett, L. Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983) no. 3, pp. 285–311 | DOI | MR | Zbl

[25] Ghys, É. Gauss–Bonnet theorem for 2-dimensional foliations, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 51–59 | DOI | MR | Zbl

[26] Ghys, É. Integrable Systems and Foliations/Feuilletages et Systèmes Intégrables, Progr. Math., Volume vol. 145, Birkhäuser Boston, Boston, MA (1997), pp. 73–91 (Montpellier, 1995) | MR | Zbl

[27] Goldman, W. Topological components of spaces of representations, Invent. Math., Volume 93 (1988) no. 3, pp. 557–607 | DOI | MR | Zbl

[28] Guéritaud, F.; Kassel, F.; Wolff, M. Compact anti-de Sitter 3-manifolds and folded hyperbolic structures on surfaces, Pac. J. Math., Volume 275 (2015) no. 2, pp. 325–359 | DOI | MR | Zbl

[29] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHÉS (1980) no. 51, pp. 137–173 | Numdam | MR | Zbl

[30] Kleptsyn, V.; Nalskiĭ, M. Convergence of orbits in random dynamical systems on a circle, Funkc. Anal. Prilozh., Volume 38 (2004) no. 4, pp. 36–54 (95–96) | MR | Zbl

[31] Kocsard, A.; Potrie, R. Livšic theorem for low-dimensional diffeomorphism cocycles, Comment. Math. Helv., Volume 91 (2016) no. 1, pp. 39–64 | DOI | MR | Zbl

[32] Ledrappier, F. Lyapunov Exponents, Lecture Notes in Math., Volume vol. 1186, Springer, Berlin (1986), pp. 56–73 (Bremen, 1984) | DOI | MR | Zbl

[33] Ledrappier, F.; Strelcyn, J.-M. A proof of the estimation from below in Pesin's entropy formula, Ergod. Theory Dyn. Syst., Volume 2 (1982) no. 2, pp. 203–219 | DOI | MR | Zbl

[34] Ledrappier, F.; Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. Math. (2), Volume 122 (1985) no. 3, pp. 509–539 | DOI | MR | Zbl

[35] Mañé, R. An ergodic closing lemma, Ann. Math. (2), Volume 116 (1982) no. 3, pp. 503–540 | DOI | MR | Zbl

[36] Martínez, M. Measures on hyperbolic surface laminations, Ergod. Theory Dyn. Syst., Volume 26 (2006) no. 3, pp. 847–867 | DOI | MR | Zbl

[37] Milnor, J. On the existence of a connection with curvature zero, Comment. Math. Helv., Volume 32 (1958), pp. 215–223 | DOI | MR | Zbl

[38] Paternain, G. Geodesic Flows, Progress in Mathematics, vol. 180, Birkhäuser Boston, Inc., Boston, MA, 1999 | MR | Zbl

[39] Pesin, Ya.B.; Sinaĭ, Ya.G. Gibbs measures for partially hyperbolic attractors, Ergod. Theory Dyn. Syst., Volume 2 (1983) no. 3–4, pp. 417–438 (1982) | MR | Zbl

[40] Ruelle, D. A measure associated with axiom-A attractors, Am. J. Math., Volume 98 (1976) no. 3, pp. 619–654 | DOI | MR | Zbl

[41] Ruelle, D. An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., Volume 9 (1978) no. 1, pp. 83–87 | DOI | MR | Zbl

[42] Sinaĭ, Ja.G. Gibbs measures in ergodic theory, Usp. Mat. Nauk, Volume 27 (1972) no. 4(166), pp. 21–64 | MR | Zbl

[43] Thurston, W. Geometry and Topology of 3-Manifolds, Princeton Lecture Notes, 1980

[44] Wolpert, S. Thurston's Riemannian metric for Teichmüller space, J. Differ. Geom., Volume 23 (1986) no. 2, pp. 143–174 | DOI | MR | Zbl

[45] Wood, J. Bundles with totally disconnected structure group, Comment. Math. Helv., Volume 46 (1971), pp. 257–273 | DOI | MR | Zbl

Cité par Sources :