Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 1-25.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is devoted to the study of the wellposedness of the radiative Euler equations. By employing the anti-derivative method, we show the unique global-in-time existence and the asymptotic stability of the solutions of the radiative Euler equations for the composite wave of two viscous shock waves with small strength. This method developed here is also helpful to other related problems with similar analytical difficulties.

DOI : 10.1016/j.anihpc.2018.03.008
Classification : 35B35, 35M20, 35L67, 35Q35
Mots-clés : Radiative Euler equations, Viscous shock waves, Diffusion wave, Stability
@article{AIHPC_2019__36_1_1_0,
     author = {Fan, Lili and Ruan, Lizhi and Xiang, Wei},
     title = {Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative {Euler} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--25},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.03.008},
     mrnumber = {3906863},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.008/}
}
TY  - JOUR
AU  - Fan, Lili
AU  - Ruan, Lizhi
AU  - Xiang, Wei
TI  - Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1
EP  - 25
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.008/
DO  - 10.1016/j.anihpc.2018.03.008
LA  - en
ID  - AIHPC_2019__36_1_1_0
ER  - 
%0 Journal Article
%A Fan, Lili
%A Ruan, Lizhi
%A Xiang, Wei
%T Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1-25
%V 36
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.008/
%R 10.1016/j.anihpc.2018.03.008
%G en
%F AIHPC_2019__36_1_1_0
Fan, Lili; Ruan, Lizhi; Xiang, Wei. Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 1-25. doi : 10.1016/j.anihpc.2018.03.008. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.008/

[1] Buet, C.; Despres, B. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transf., Volume 85 (2004), pp. 385–418 | DOI

[2] Coulombel, J.; Goudon, T.; Lafitte, P.; Lin, C. Analysis of large amplitude shock profiles for non-equilibrium radiative hydrodynamics: formation of Zeldovich spikes, Shock Waves, Volume 22 (2012), pp. 181–197 | DOI

[3] Duan, R.; Fellner, K.; Zhu, C. Energy method for multi-dimensional balance laws with non-local dissipation, J. Math. Pures Appl., Volume 93 (2010), pp. 572–598 | DOI | MR | Zbl

[4] Duan, R.; Ruan, L.; Zhu, C. Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., Volume 22 (2012) (39 pp.) | DOI | MR | Zbl

[5] Fan, L.; Matsumura, A. Asymptotic stability of a composite wave of two viscous shock waves for a one-dimensional system of non-viscous and heat-conductive ideal gas, J. Differ. Equ., Volume 258 (2015), pp. 1129–1157 | MR | Zbl

[6] Francesco, M. Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables, Nonlinear Differ. Equ. Appl., Volume 13 (2007), pp. 531–562 | DOI | MR | Zbl

[7] Gao, W.; Zhu, C. Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 511–541 | MR | Zbl

[8] Gao, W.; Ruan, L.; Zhu, C. Decay rates to the planar rarefaction waves for a model system of the radiating gas in n -dimensions, J. Differ. Equ., Volume 244 (2008), pp. 2614–2640 | MR | Zbl

[9] Godillon-Lafitte, P.; Goudon, T. A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asymptotics, SIAM J. Multiscale Model. Simul., Volume 4 (2005), pp. 1245–1279 | DOI | MR | Zbl

[10] Hamer, K. Nonlinear effects on the propagation of sound waves in a radiating gas, Q. J. Mech. Appl. Math., Volume 24 (1971), pp. 155–168 | DOI | Zbl

[11] Hsiao, L.; Liu, T.-P. Convergence to diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comment. Phys.-Math., Volume 143 (1992), pp. 599–605 | MR | Zbl

[12] Huang, F.; Li, J.; Matsumura, A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes system, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 89–116 | DOI | MR | Zbl

[13] Huang, F.; Li, X. Convergence to the rarefaction wave for a model of radiating gas in one-dimension, Acta Math. Appl. Sin. Engl. Ser., Volume 32 (2016), pp. 239–256 | DOI | MR

[14] Huang, F.; Matsumura, A. Stability of a composite wave of two viscous shock waves for the full compressible Navier–Stokes equation, Comment. Phys.-Math., Volume 289 (2009), pp. 841–861 | MR | Zbl

[15] Huang, F.; Matsumura, A.; Xin, Z. Stability of contact discontinuities for the 1-D compressible Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 179 (2006), pp. 55–77 | DOI | MR | Zbl

[16] Huang, F.; Zhao, H. On the global stability of contact discontinuity for compressible Navier–Stokes equations, Rend. Semin. Mat. Univ., Volume 109 (2003), pp. 283–305 | Numdam | MR | Zbl

[17] Jiang, S.; Li, F.; Xie, F. Nonrelativistic limit of the compressible Navier–Stokes–Fourier-P1 approximation model arising in radiation hydrodynamics, SIAM J. Math. Anal., Volume 47 (2015), pp. 3726–3746 | DOI | MR

[18] Kawashima, S. Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the Equations of Magneto-Hydrodynamics, Kyoto University, 1984 http://hdl.handle.net/2433/97887 (doctoral thesis in)

[19] Kawashima, S.; Nikkuni, Y.; Nishibata, S. Analysis of Systems of Conservation Laws, Chapman Hall/CRC Monogr. Surv. Pure. Appl. Math., Volume vol. 99, Chapman Hall/CRC, Boca Raton, FL (1999), pp. 87–127 (Aachen, 1997) | MR | Zbl

[20] Kawashima, S.; Nishibata, S. Shock waves for a model system of a radiating gas, SIAM J. Math. Anal., Volume 30 (1999), pp. 95–117 | MR | Zbl

[21] Kawashima, S.; Nishibata, S. Cauchy problem for a model system of the radiating gas: weak solutions with a jump and classical solutions, Math. Models Methods Appl. Sci., Volume 9 (1999), pp. 69–91 | DOI | MR | Zbl

[22] Lattanzio, C.; Marcati, P. Global well-posedness and relaxation limits of a model for radiating gas, J. Differ. Equ., Volume 190 (2003), pp. 439–465 | DOI | MR | Zbl

[23] Lattanzio, C.; Mascia, C.; Nguyen, T.; Plaza, R.; Zumbrun, K. Stability of scalar radiative shock profiles, SIAM J. Math. Anal., Volume 41 (2009), pp. 2165–2206 | MR | Zbl

[24] Lattanzio, C.; Mascia, C.; Serre, D. Shock waves for radiative hyperbolic–elliptic systems, Indiana Univ. Math. J., Volume 56 (2007), pp. 2601–2640 | DOI | MR | Zbl

[25] Lattanzio, C.; Mascia, C.; Serre, D.; Benzoni-Gavage, S.; Serre, D. Proceedings of the XIth International Conference, Springer-Verlag, Berlin, Heidelberg (2008), pp. 661–669 (Ecole Normale Supérieure, Lyon, July 17–21, 2006) | MR | Zbl

[26] Lin, C. Asymptotic stability of rarefaction waves in radiative hydrodynamics, Commun. Math. Sci., Volume 9 (2011), pp. 207–223 | MR | Zbl

[27] Lin, C.; Coulombel, J.; Goudon, T. Shock profiles for non-equilibrium radiating gas, Physica D, Volume 218 (2006), pp. 83–94 | MR | Zbl

[28] Lin, C.; Coulombel, J.; Goudon, T. Asymptotic stability of shock profiles in radiative hydrodynamics, C. R. Math. Acad. Sci. Paris, Volume 345 (2007), pp. 625–628 | MR | Zbl

[29] Liu, T. Nonlinear stability of shock waves for viscous conservation laws, Mem. Am. Math. Soc., Volume 56 (1985), pp. 1–108 | MR | Zbl

[30] Lowrie, R.; Morel, J.; Hittinger, J. The coupling of radiation and hydrodynamics, Astrophys. J., Volume 521 (1999), pp. 432–450 | DOI

[31] Mascia, C. Small, medium and large shock waves for radiative Euler equations, Physica D, Volume 245 (2013), pp. 46–56 | DOI | MR | Zbl

[32] Mihalas, D.; Mihalas, B. Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1984 | MR | Zbl

[33] Nguyen, T. Multi-dimensional stability of planar Lax shocks in hyperbolic–elliptic coupled systems, J. Differ. Equ., Volume 252 (2012), pp. 382–411 | DOI | MR | Zbl

[34] Nguyen, T.; Plaza, R.; Zumbrun, K. Stability of radiative shock profiles for hyperbolic–elliptic coupled systems, Physica D, Volume 239 (2010), pp. 428–453 | DOI | MR | Zbl

[35] Nishikawa, M.; Nishibata, S. Convergence rates toward the travelling waves for a model system of the radiating gas, Math. Methods Appl. Sci., Volume 30 (2007), pp. 649–663 | DOI | MR | Zbl

[36] Ohnawa, M. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities, Kinet. Relat. Models, Volume 5 (2012), pp. 857–872 | DOI | MR | Zbl

[37] Ohnawa, M. L-stability of continuous shock waves in a radiating gas model, SIAM J. Math. Anal., Volume 46 (2014), pp. 2136–2159 | DOI | MR | Zbl

[38] Ohnawa, M. L-stability of discontinuous traveling waves in a hyperbolic–elliptic coupled system, SIAM J. Math. Anal., Volume 48 (2016), pp. 3820–3839 | DOI | MR

[39] Rohde, C.; Wang, W.; Xie, F. Hyperbolic–hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 2145–2171 | DOI | MR | Zbl

[40] Ruan, L.; Zhang, J. Asymptotic stability of rarefaction wave for hyperbolic–elliptic coupled system in radiating gas, Acta Math. Sci. Ser. B Engl. Ed., Volume 27 (2007), pp. 347–360 | MR | Zbl

[41] Ruan, L.; Zhu, C. Asymptotic decay toward rarefaction wave for a hyperbolic–elliptic coupled system on half space, J. Partial Differ. Equ., Volume 21 (2008), pp. 173–192 | MR | Zbl

[42] Ruan, L.; Zhu, C. Asymptotic behavior of solutions to a hyperbolic–elliptic coupled system in multi-dimensional radiating gas, J. Differ. Equ., Volume 249 (2010), pp. 2076–2110 | DOI | MR | Zbl

[43] Serre, D. L1-stability of constants in a model for radiating gases, Commun. Math. Sci., Volume 1 (2003), pp. 197–205 | DOI | MR | Zbl

[44] Smoller, J. Shock Waves and Reaction–Diffusion Equations, Springer-Verlag, New York–Berlin, 1983 | DOI | MR | Zbl

[45] Vincenti, W.; Kruger, C. Introduction to Physical Gas Dynamics, Wiley, New York, 1965

[46] Wang, J.; Xie, F. Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model, SIAM J. Math. Anal., Volume 43 (2011), pp. 1189–1204 | DOI | MR | Zbl

[47] Wang, J.; Xie, F. Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system, J. Differ. Equ., Volume 251 (2011), pp. 1030–1055 | DOI | MR | Zbl

[48] Wang, W.; Wang, W. Blow up and global existence of solutions for a model system of the radiating gas, Nonlinear Anal., Volume 81 (2013), pp. 12–30 | DOI | MR | Zbl

[49] Wang, W.; Wang, W. The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal., Volume 71 (2009), pp. 1180–1195 | MR | Zbl

[50] Wang, W.; Wang, W.; Wu, Z. Decay of a model system of radiating gas, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2331–2340 | DOI | MR | Zbl

[51] Xie, F. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012), pp. 1075–1100 | MR | Zbl

[52] Yang, T.; Zhao, H. BV estimates on Lax–Friedrichs' scheme for a model of radiating gas, Appl. Anal., Volume 83 (2004), pp. 533–539 | DOI | MR | Zbl

[53] Zeldovich, Y.; Raizer, Y. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, 1966

Cité par Sources :