The Sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1885-1945.

It is well-known that the dynamics of biaxial ferromagnets with a strong easy-plane anisotropy is essentially governed by the Sine-Gordon equation. In this paper, we provide a rigorous justification to this observation. More precisely, we show the convergence of the solutions to the Landau–Lifshitz equation for biaxial ferromagnets towards the solutions to the Sine-Gordon equation in the regime of a strong easy-plane anisotropy. Moreover, we establish the sharpness of our convergence result.

This result holds for solutions to the Landau–Lifshitz equation in high order Sobolev spaces. We first provide an alternative proof for local well-posedness in this setting by introducing high order energy quantities with better symmetrization properties. We then derive the convergence from the consistency of the Landau–Lifshitz equation with the Sine-Gordon equation by using well-tailored energy estimates. As a by-product, we also obtain a further derivation of the free wave regime of the Landau–Lifshitz equation.

DOI : 10.1016/j.anihpc.2018.03.005
Classification : 35A01, 35L05, 35Q55, 35Q60, 37K40
Mots clés : Landau–Lifshitz equation, Sine-Gordon equation, Long-wave regimes
@article{AIHPC_2018__35_7_1885_0,
     author = {de Laire, Andr\'e and Gravejat, Philippe},
     title = {The {Sine-Gordon} regime of the {Landau{\textendash}Lifshitz} equation with a strong easy-plane anisotropy},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1885--1945},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.005},
     mrnumber = {3906859},
     zbl = {1418.35021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.005/}
}
TY  - JOUR
AU  - de Laire, André
AU  - Gravejat, Philippe
TI  - The Sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1885
EP  - 1945
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.005/
DO  - 10.1016/j.anihpc.2018.03.005
LA  - en
ID  - AIHPC_2018__35_7_1885_0
ER  - 
%0 Journal Article
%A de Laire, André
%A Gravejat, Philippe
%T The Sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1885-1945
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.005/
%R 10.1016/j.anihpc.2018.03.005
%G en
%F AIHPC_2018__35_7_1885_0
de Laire, André; Gravejat, Philippe. The Sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1885-1945. doi : 10.1016/j.anihpc.2018.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.005/

[1] Bejenaru, I.; Ionescu, A.D.; Kenig, C.E.; Tataru, D. Global Schrödinger maps in dimensions d2: small data in the critical Sobolev spaces, Ann. Math., Volume 173 (2011) no. 3, pp. 1443–1506 | DOI | MR | Zbl

[2] Béthuel, F.; Danchin, R.; Smets, D. On the linear wave regime of the Gross–Pitaevskii equation, J. Anal. Math., Volume 110 (2009) no. 1, pp. 297–338 | DOI | MR | Zbl

[3] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation I, Int. Math. Res. Not., Volume 2009 (2009) no. 14, pp. 2700–2748 | MR | Zbl

[4] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation II, Commun. Partial Differ. Equ., Volume 35 (2010) no. 1, pp. 113–164 | DOI | MR | Zbl

[5] Buckingham, R.; Miller, P.D. Exact solutions of semiclassical non-characteristic Cauchy problems for the Sine-Gordon equation, Physica D, Volume 237 (2008) no. 18, pp. 2296–2341 | DOI | MR | Zbl

[6] Chang, N.-H.; Shatah, J.; Uhlenbeck, K. Schrödinger maps, Commun. Pure Appl. Math., Volume 53 (2000) no. 5, pp. 590–602 | MR | Zbl

[7] Chiron, D. Error bounds for the (KdV)/(KP-I) and the (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 6, pp. 1175–1230 | DOI | Numdam | MR | Zbl

[8] de Laire, A. Minimal energy for the traveling waves of the Landau–Lifshitz equation, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 96–132 | DOI | MR | Zbl

[9] de Laire, A.; Gravejat, P. Stability in the energy space for chains of solitons of the Landau–Lifshitz equation, J. Differ. Equ., Volume 258 (2015) no. 1, pp. 1–80 | DOI | MR | Zbl

[10] Ding, W.; Wang, Y. Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A, Volume 41 (1998) no. 7, pp. 746–755 | DOI | MR | Zbl

[11] Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, Amer. Math. Soc., Providence, 2010 | MR | Zbl

[12] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer-Verlag, Berlin, 2007 (translated by A.G. Reyman) | MR | Zbl

[13] Gallo, C. The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Commun. Partial Differ. Equ., Volume 33 (2008) no. 5, pp. 729–771 | DOI | MR | Zbl

[14] Gérard, P.; Farina, A.; Saut, J.-C. The Gross–Pitaevskii equation in the energy space, Stationary and Time Dependent Gross–Pitaevskii Equations, Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129–148 | DOI | MR | Zbl

[15] Germain, P.; Rousset, F. Long wave limit for Schrödinger maps, 2016 (preprint) | arXiv | MR

[16] Guo, B.; Ding, S. Landau–Lifshitz Equations, Frontiers of Research with the Chinese Academy of Sciences, vol. 1, World Scientific, Hackensack, 2008 | MR | Zbl

[17] Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications, vol. 26, Springer-Verlag, Berlin, 1997 | MR | Zbl

[18] Keel, M.; Tao, T. Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955–980 | DOI | MR | Zbl

[19] Kosevich, A.M.; Ivanov, B.A.; Kovalev, A.S. Magnetic solitons, Phys. Rep., Volume 194 (1990) no. 3–4, pp. 117–238

[20] Landau, L.D.; Lifshitz, E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, Volume 8 (1935), pp. 153–169 | Zbl

[21] Madelung, E. Quantentheorie in hydrodynamischer Form, Z. Phys., Volume 40 (1927), pp. 322–326 | DOI | JFM

[22] McGahagan, H. An approximation scheme for Schrödinger maps, Commun. Partial Differ. Equ., Volume 32 (2007) no. 3, pp. 375–400 | DOI | MR | Zbl

[23] Merle, F.; Raphaël, P.; Rodnianski, I. Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., Volume 193 (2013) no. 2, pp. 249–365 | DOI | MR | Zbl

[24] Mikeska, H.-J.; Steiner, M. Solitary excitations in one-dimensional magnets, Adv. Phys., Volume 40 (1991) no. 3, pp. 191–356

[25] Moser, J. A rapidly convergent iteration method and non-linear differential equations. II, Ann. Sc. Norm. Super. Pisa (3), Volume 20 (1966) no. 3, pp. 499–535 | Numdam | MR | Zbl

[26] Schoen, R.; Uhlenbeck, K. Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983), pp. 253–268 | DOI | MR | Zbl

[27] Shatah, J.; Struwe, M. Geometric Wave Equations, Courant Lecture Notes in Mathematics, vol. 2, Amer. Math. Soc., Providence, 1998 | MR | Zbl

[28] Shatah, J.; Zeng, C. Schrödinger maps and anti-ferromagnetic chains, Commun. Math. Phys., Volume 262 (2006) no. 2, pp. 299–315 | DOI | MR | Zbl

[29] Sklyanin, E.K. On Complete Integrability of the Landau–Lifshitz Equation, Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, 1979 (Technical Report E-3-79)

[30] Sulem, P.-L.; Sulem, C.; Bardos, C. On the continuous limit for a system of classical spins, Commun. Math. Phys., Volume 107 (1986) no. 3, pp. 431–454 | MR | Zbl

[31] Tao, T. Finite time blowup for high dimensional nonlinear wave systems with bounded smooth nonlinearity, Commun. Partial Differ. Equ., Volume 41 (2016) no. 8, pp. 1204–1229 | MR | Zbl

[32] Taylor, M.E. Partial Differential Equations III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 2011 | MR | Zbl

[33] Trèves, F. Basic Linear Partial Differential Equations, Pure and Applied Mathematics, vol. 62, Academic Press, New York, 1975 | MR | Zbl

[34] Zhou, Y.L.; Guo, B.L. Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. China Ser. A, Volume 27 (1984) no. 8, pp. 799–811 | MR | Zbl

Cité par Sources :