Global well-posedness of partially periodic KP-I equation in the energy space and application
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1773-1826.

In this article, we address the Cauchy problem for the KP-I equation

tu+x3ux1y2u+uxu=0
for functions periodic in y. We prove global well-posedness of this problem for any data in the energy space E={uL2(R×T),xuL2(R×T),x1yuL2(R×T)}. We then prove that the KdV line soliton, seen as a special solution of KP-I equation, is orbitally stable under this flow, as long as its speed is small enough.

DOI : 10.1016/j.anihpc.2018.03.002
Mots clés : Kadomtsev–Petviashvili equation, Global well-posedness, Orbital stability, KdV line soliton
@article{AIHPC_2018__35_7_1773_0,
     author = {Robert, Tristan},
     title = {Global well-posedness of partially periodic {KP-I} equation in the energy space and application},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1773--1826},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.002},
     mrnumber = {3906856},
     zbl = {1404.35106},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.002/}
}
TY  - JOUR
AU  - Robert, Tristan
TI  - Global well-posedness of partially periodic KP-I equation in the energy space and application
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1773
EP  - 1826
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.002/
DO  - 10.1016/j.anihpc.2018.03.002
LA  - en
ID  - AIHPC_2018__35_7_1773_0
ER  - 
%0 Journal Article
%A Robert, Tristan
%T Global well-posedness of partially periodic KP-I equation in the energy space and application
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1773-1826
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.002/
%R 10.1016/j.anihpc.2018.03.002
%G en
%F AIHPC_2018__35_7_1773_0
Robert, Tristan. Global well-posedness of partially periodic KP-I equation in the energy space and application. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1773-1826. doi : 10.1016/j.anihpc.2018.03.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.002/

[1] Alexander, J.C.; Pego, R.L.; Sachs, R.L. On the transverse instability of solitary waves in the Kadomtsev–Petviashvili equation, Phys. Lett. A, Volume 226 (1997) no. 3, pp. 187–192 | MR | Zbl

[2] Benjamin, T.B. The stability of solitary waves, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 328 (1972) no. 1573, pp. 153–183 | MR

[3] Bourgain, Jean On the Cauchy problem for the Kadomstev–Petviashvili equation, Geom. Funct. Anal., Volume 3 (1993) no. 4, pp. 315–341 | MR | Zbl

[4] Guo, Zihua; Oh, Tadahiro Non-existence of solutions for the periodic cubic NLS below L2 , Int. Math. Res. Not. (2016) | MR | Zbl

[5] Guo, Zihua; Peng, Lizhong; Wang, Baoxiang; Wang, Yuzhao Uniform well-posedness and inviscid limit for the Benjamin–Ono–Burgers equation, Adv. Math., Volume 228 (2011) no. 2, pp. 647–677 | MR | Zbl

[6] Hadac, Martin Well-posedness for the Kadomtsev–Petviashvili ii equation and generalisations, Trans. Am. Math. Soc., Volume 360 (2008) no. 12, pp. 6555–6572 | MR | Zbl

[7] Hadac, Martin; Herr, Sebastian; Koch, Herbert Well-posedness and scattering for the kp-ii equation in a critical space, Ann. Inst. Henri Poincaré (C) Non Linear Anal., Volume 26 (2009) no. 3, pp. 917–941 | Numdam | MR | Zbl

[8] Ionescu, A.D.; Kenig, C.E. Local and global well-posedness of periodic KP-I equations, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. Math. Stud., vol. 163, 2009, pp. 181–211 | MR | Zbl

[9] Ionescu, A.D.; Kenig, C.E.; Tataru, D. Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., Volume 173 (2008) no. 2, pp. 265–304 | DOI | MR | Zbl

[10] Isaza, Pedro; Mejía, Jorge Local and global Cauchy problems for the Kadomtsev–Petviashvili (kp–ii) equation in Sobolev spaces of negative indices, Commun. Partial Differ. Equ., Volume 26 (2001) no. 5–6, pp. 1027–1054 | MR | Zbl

[11] Iório, Rafael José; Nunes, Wagner Vieira Leite On equations of KP-type, Proc. R. Soc. Edinb., Sect. A, Math., Volume 128 (1998), pp. 725 | MR | Zbl

[12] Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., Volume 15 (December 1970) | Zbl

[13] Kenig, Carlos E. On the local and global well-posedness theory for the KP-I equation, Ann. Inst. Henri Poincaré (C) Non Linear Anal., Volume 21 (2004) no. 6, pp. 827–838 | Numdam | MR | Zbl

[14] Kenig, Carlos E.; Pilod, Didier Well-posedness for the fifth-order KdV equation in the energy space, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2551–2612 | MR | Zbl

[15] Koch, H.; Tzvetkov, N. On finite energy solutions of the KP-I equation, Math. Z., Volume 258 (2008) no. 1, pp. 55–68 | DOI | MR | Zbl

[16] Koch, Herbert; Tzvetkov, Nikolay On the local well-posedness of the Benjamin–Ono equation in Hs(R) , Int. Math. Res. Not., Volume 2003 (2003) no. 26, pp. 1449–1464 | MR | Zbl

[17] Mizumachi, Tetsu; Tzvetkov, Nikolay Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann., Volume 352 (2012) no. 3, pp. 659–690 | MR | Zbl

[18] Molinet, L.; Saut, J.-C.; Tzvetkov, N. Well-posedness and ill-posedness results for the Kadomtsev–Petviashvili-I equation, Duke Math. J., Volume 115 (2002) no. 2, pp. 353–384 | DOI | MR | Zbl

[19] Molinet, L.; Saut, J.-C.; Tzvetkov, N. Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. Henri Poincaré (C) Non Linear Anal., Volume 28 (2011) no. 5, pp. 653–676 | Numdam | MR | Zbl

[20] Luc, Molinet Global well-posedness in the energy space for the Benjamin–Ono equation on the circle, Math. Ann., Volume 337 (2007) no. 2, pp. 353–383 | MR | Zbl

[21] Rousset, Frederic; Tzvetkov, Nikolay Stability and instability of the KdV solitary wave under the KP-I flow, Commun. Math. Phys., Volume 313 (2012) no. 1, pp. 155–173 | MR | Zbl

[22] Saut, J.-C.; Tzvetkov, N. On periodic KP-I type equations, Commun. Math. Phys., Volume 221 (2001), pp. 451–476 | MR | Zbl

[23] Takaoka, H.; Tzvetkov, N. On the local regularity of the Kadomtsev–Petviashvili-II equation, Int. Math. Res. Not., Volume 2001 (2001) no. 2, pp. 77–114 | DOI | MR | Zbl

[24] Tom, Michael M. On a generalized Kadomtsev–Petviashvili equation, Contemp. Math., Volume 200 (1996), pp. 193–210 | MR | Zbl

[25] Zhang, Yu Local well-posedness of KP-I initial value problem on torus in the Besov space, Commun. Partial Differ. Equ. (2015), pp. 1–26 | MR

Cité par Sources :