Results of Ambrosetti–Prodi type for non-selfadjoint elliptic operators
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1757-1772.

The well-known Ambrosetti–Prodi theorem considers perturbations of the Dirichlet Laplacian by a nonlinear function whose derivative jumps over the principal eigenvalue of the operator. Various extensions of this landmark result were obtained for self-adjoint operators, in particular by Berger and Podolak, who gave a geometrical description of the solution set. In this text we show that similar theorems are valid for non-self-adjoint operators. In particular, we prove that the semilinear operator is a global fold. As a consequence, we obtain what appears to be the first exact multiplicity result for elliptic equations in non-divergence form. We employ techniques based on the maximum principle.

DOI : 10.1016/j.anihpc.2018.03.001
Mots clés : Elliptic equations, Non-divergence form, Ambrosetti–Prodi, Multiplicity results, Global fold
@article{AIHPC_2018__35_7_1757_0,
     author = {Sirakov, Boyan and Tomei, Carlos and Zaccur, Andr\'e},
     title = {Results of {Ambrosetti{\textendash}Prodi} type for non-selfadjoint elliptic operators},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1757--1772},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.001},
     mrnumber = {3906855},
     zbl = {06976930},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.001/}
}
TY  - JOUR
AU  - Sirakov, Boyan
AU  - Tomei, Carlos
AU  - Zaccur, André
TI  - Results of Ambrosetti–Prodi type for non-selfadjoint elliptic operators
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1757
EP  - 1772
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.001/
DO  - 10.1016/j.anihpc.2018.03.001
LA  - en
ID  - AIHPC_2018__35_7_1757_0
ER  - 
%0 Journal Article
%A Sirakov, Boyan
%A Tomei, Carlos
%A Zaccur, André
%T Results of Ambrosetti–Prodi type for non-selfadjoint elliptic operators
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1757-1772
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.001/
%R 10.1016/j.anihpc.2018.03.001
%G en
%F AIHPC_2018__35_7_1757_0
Sirakov, Boyan; Tomei, Carlos; Zaccur, André. Results of Ambrosetti–Prodi type for non-selfadjoint elliptic operators. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1757-1772. doi : 10.1016/j.anihpc.2018.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.03.001/

[1] Amann, H. Fixed point equations and elliptic eigenvalue problems in ordered Banach spaces, SIAM Rev., Volume 18 (1976), pp. 620–709 | DOI | MR | Zbl

[2] Amann, H.; Hess, P. A multiplicity result for a class of elliptic boundary value problems, Proc. R. Soc. Edinb., Sect. A, Volume 84 (1979), pp. 145–151 | DOI | MR | Zbl

[3] Ambrosetti, A.; Prodi, G. On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., Volume 93 (1972), pp. 231–246 | DOI | MR | Zbl

[4] Berestycki, H. Le nombre de solutions de certain problèmes sémi-linéaires elliptiques, J. Funct. Anal., Volume 40 (1981), pp. 1–29 | DOI | MR | Zbl

[5] Berestycki, H.; Nirenberg, L.; Varadhan, S.R.S. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math., Volume 47 (1994), pp. 47–92 | DOI | MR | Zbl

[6] Berger, M.S.; Church, P.T. Complete integrability and perturbation of a nonlinear Dirichlet problem, I, Indiana Univ. Math. J., Volume 29 (1979), pp. 935–952 | MR | Zbl

[7] Berger, M.S.; Podolak, E. On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., Volume 24 (1975), pp. 837–846 | DOI | MR | Zbl

[8] Birindelli, I. Hopf's lemma and anti-maximum principle in general domains, J. Differ. Equ., Volume 119 (1995), pp. 450–472 | DOI | MR | Zbl

[9] Brezis, H.; Cabré, X. Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital., Volume 8 (1998) no. 1, pp. 223–262 | MR | Zbl

[10] Cal Neto, J.T.; Tomei, C. Numerical analysis of semilinear elliptic equations with finite spectral interaction, J. Math. Anal. Appl., Volume 395 (2012), pp. 63–77 | DOI | MR | Zbl

[11] Calanchi, M.; Tomei, C.; Zaccur, A.; Carvalho, A. Fibers and global geometry of functions, Contributions to Nonlinear Elliptic Equations and Systems, Prog. Nonlinear Differ. Equ. Appl., vol. 86, 2015, pp. 55–75 | MR

[12] Calanchi, M.; Tomei, C.; Zaccur, A. Abundance of cusps and a converse to the Ambrosetti–Prodi theorem, Ann. Sc. Norm. Super. Pisa (2018) (in press) | arXiv | DOI | MR | Zbl

[13] Dancer, E.N. On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl., Volume 57 (1978), pp. 351–366 | MR | Zbl

[14] de Figueiredo, D. Lectures on boundary value problems of the Ambrosetti–Prodi type, Atas do 12o Sem. Bras. Anal., 1980, pp. 230–292

[15] de Figueiredo, D.; Sirakov, B. On the Ambrosetti–Prodi problem for non-variational elliptic systems, J. Differ. Equ., Volume 240 (2007), pp. 357–374 | DOI | MR | Zbl

[16] de Figueiredo, D.; Solimini, S. A variational approach to superlinear elliptic problems, Commun. Partial Differ. Equ., Volume 9 (1984), pp. 699–717 | DOI | MR | Zbl

[17] de Morais Filho, D.C. An Ambrosetti–Prodi-type problem for an elliptic system of equations via monotone iteration method and Leray–Schauder degree theory, Abstr. Appl. Anal., Volume 1 (1996), pp. 137–152 | MR | Zbl

[18] Demengel, F. Non uniqueness of solutions for Dirichlet problem related to fully nonlinear singular or degenerate operator, Adv. Differ. Equ., Volume 14 (2009) no. 11–12, pp. 1107–1126 | MR | Zbl

[19] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, Basel, 2001 | DOI | MR | Zbl

[20] Kaminski, O. Numerical Analysis of Finite Spectral Interaction on Bounded Domains, Departamento de Matemática, PUC-Rio, 2016 (Ph.D. thesis)

[21] Krylov, N.V. Some Lp-estimates for elliptic and parabolic operators with measurable coefficients, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012) no. 6, pp. 2073–2090 | DOI | MR | Zbl

[22] Malta, I.; Saldanha, N.; Tomei, C. Morin singularities and global geometry in a class of ordinary differential operators, Topol. Methods Nonlinear Anal., Volume 10 (1997), pp. 137–169 | MR | Zbl

[23] Manes, A.; Micheletti, A.M. Un estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Unione Mat. Ital., Volume 7 (1973), pp. 285–301 | MR | Zbl

[24] Sirakov, B. Nonuniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti–Prodi phenomenon, Analysis and Topology in Nonlinear Differential Equations, Springer, 2014, pp. 405–421 | DOI | MR | Zbl

[25] Sirakov, B. Boundary Harnack estimates and quantitative strong maximum principles for uniformly elliptic PDE, Int. Math. Res. Not. (2017) | arXiv | DOI | MR

[26] Solimini, S. Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 143–156 | DOI | Numdam | MR | Zbl

[27] Tomei, C.; Zaccur, A.; Brezis, H. Geometric aspects of Ambrosetti–Prodi operators with Lipschitz nonlinearities, Analysis and Topology in Nonlinear Differential Equations, Prog. Nonlinear Differ. Equ. Appl., vol. 85, Springer, Basel, 2014, pp. 445–456 | MR | Zbl

[28] Whitney, H. On singularities of mappings on Euclidean spaces, I, Ann. Math., Volume 62 (1955), pp. 374–410 | DOI | Zbl

Cité par Sources :