Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1687-1706.

We consider the set of partially hyperbolic symplectic diffeomorphisms which are accessible, have 2-dimensional center bundle and satisfy some pinching and bunching conditions. In this set, we prove that the non-uniformly hyperbolic maps are Cr open and there exists a Cr open and dense subset of continuity points for the center Lyapunov exponents. We also generalize these results to volume-preserving systems.

DOI : 10.1016/j.anihpc.2018.01.007
Classification : 37D25, 37D30
Mots clés : Partially hyperbolic diffeomorphisms, Lyapunov exponents, Non-uniform hyperbolicity
@article{AIHPC_2018__35_6_1687_0,
     author = {Liang, Chao and Marin, Karina and Yang, Jiagang},
     title = {Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1687--1706},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.01.007},
     mrnumber = {3846241},
     zbl = {1398.37025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/}
}
TY  - JOUR
AU  - Liang, Chao
AU  - Marin, Karina
AU  - Yang, Jiagang
TI  - Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1687
EP  - 1706
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/
DO  - 10.1016/j.anihpc.2018.01.007
LA  - en
ID  - AIHPC_2018__35_6_1687_0
ER  - 
%0 Journal Article
%A Liang, Chao
%A Marin, Karina
%A Yang, Jiagang
%T Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1687-1706
%V 35
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/
%R 10.1016/j.anihpc.2018.01.007
%G en
%F AIHPC_2018__35_6_1687_0
Liang, Chao; Marin, Karina; Yang, Jiagang. Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1687-1706. doi : 10.1016/j.anihpc.2018.01.007. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/

[1] A. Avila, A. Eskin, M. Viana, Continuity of Lyapunov exponents of random matrix products (unpublished results).

[2] Avila, A.; Santamaria, J.; Viana, M. Holonomy invariance: rough regularity and applications to Lyapunov exponents, Astérisque, Volume 358 (2013), pp. 13–74 | Numdam | MR | Zbl

[3] Avila, A.; Viana, M. Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., Volume 181 (2010), pp. 115–178 | DOI | MR | Zbl

[4] A. Avila, M. Viana, Stable accessibility with 2-dimensional, center (unpublished results).

[5] Backes, L.; Brown, A.; Butler, C. Continuity of Lyapunov exponents for cocycles with invariant holonomies, 2015 (Preprint) | arXiv | MR | Zbl

[6] Barreira, L.; Pesin, Y.; Schmeling, J. Dimension and product structure of hyperbolic measures, Ann. Math., Volume 149 (1999), pp. 755–783 | DOI | MR | Zbl

[7] Bochi, J. Genericity of zero Lyapunov exponents, Ergod. Theory Dyn. Syst., Volume 22 (2002), pp. 1667–1696 | DOI | MR | Zbl

[8] Bochi, J. c1 generic symplectic diffeomorphism: partial hyperbolicity and zero center Lyapunov exponents, J. Inst. Math. Jussieu, Volume 9 (2010), pp. 49–93 | DOI | MR | Zbl

[9] Bochi, J.; Viana, M. The Lyapunov exponents of generic volume preserving and symplectic systems, Ann. Math., Volume 161 (2005), pp. 1423–1485 | DOI | MR | Zbl

[10] Bocker-Neto, C.; Viana, M. Continuity of Lyapunov exponents for random 2d matrices, Ergod. Theory Dyn. Syst. (2016), pp. 1–30 | MR

[11] Bonatti, C.; Díaz, L.J.; Viana, M. Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Mathematical Sciences, vol. 102, Springer-Verlag, 2005 | MR | Zbl

[12] Bonatti, C.; Gómez-Mont, X.; Viana, M. Généricité d' exposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 579–624 | DOI | Numdam | MR | Zbl

[13] Burns, K.; Wilkinson, A. On the ergodicity of partially hyperbolic systems, Ann. Math., Volume 171 (2010), pp. 451–489 | DOI | MR | Zbl

[14] Furstenberg, H. Non-commuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377–428 | DOI | MR | Zbl

[15] Hirsch, M.; Pugh, C.; Shub, M. Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977 | DOI | MR | Zbl

[16] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., Volume 51 (1980), pp. 131–173 | DOI | Numdam | MR | Zbl

[17] Ledrappier, F. Lyapunov Exponents, Lect. Notes Math., Volume vol. 1186, Springer-Verlag (1986), pp. 56–73 (Bremen, 1984) | DOI | MR | Zbl

[18] Ledrappier, F.; Young, L.S. The metric entropy of diffeomorphisms II. Relations between entropy, exponents and dimension. Dimension and product structure of hyperbolic measures, Ann. Math., Volume 122 (1985), pp. 540–574 | DOI | MR | Zbl

[19] Malheiro, E.C.; Viana, M. Lyapunov exponents of linear cocycles over Markov shifts, Stoch. Dyn., Volume 15 (2015), pp. 1–27 | DOI | MR | Zbl

[20] Mañé, R. International Conference on Dynamical Systems, Longman (1996), pp. 110–119 (Montevideo, 1995) | MR | Zbl

[21] Marin, K. cr-density of (non-uniform) hyperbolicity in partially hyperbolic symplectic diffeomorphisms, Comment. Math. Helv., Volume 91 (2016), pp. 357–396 | DOI | MR | Zbl

[22] Pesin, Y. Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys, Volume 32 (1977) no. 4, pp. 55–114 | DOI | MR | Zbl

[23] Pugh, C.; Shub, M.; Wilkinson, A. Hölder foliations, revisited, J. Mod. Dyn., Volume 6 (2012), pp. 835–908 | MR | Zbl

[24] Rokhlin, V.A. On the fundamental ideas of measure theory, Am. Math. Soc. Transl. (1), Volume 10 (1952), pp. 1–52 (transl. from: Math. Sb., 25, 1949, 107–150) | MR

[25] Shub, M. Global Stability of Dynamical Systems, Springer-Verlag, 1987 | DOI | MR | Zbl

[26] Shub, M.; Wilkinson, A. Stably ergodic approximation: two examples, Ergod. Theory Dyn. Syst., Volume 20 (2000), pp. 875–893 | DOI | MR | Zbl

[27] Viana, M. Lectures on Lyapunov Exponents, Cambridge University Press, 2014 | DOI | MR | Zbl

[28] Viana, M.; Yang, J. Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 845–877 | DOI | Numdam | MR | Zbl

[29] Xia, Z.; Zhang, H. A cr closing lemma for a class of symplectic diffeomorphisms, Nonlinearity, Volume 19 (2006), pp. 511–516 | MR | Zbl

Cité par Sources :