We consider the set of partially hyperbolic symplectic diffeomorphisms which are accessible, have 2-dimensional center bundle and satisfy some pinching and bunching conditions. In this set, we prove that the non-uniformly hyperbolic maps are open and there exists a open and dense subset of continuity points for the center Lyapunov exponents. We also generalize these results to volume-preserving systems.
Mots clés : Partially hyperbolic diffeomorphisms, Lyapunov exponents, Non-uniform hyperbolicity
@article{AIHPC_2018__35_6_1687_0, author = {Liang, Chao and Marin, Karina and Yang, Jiagang}, title = {Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1687--1706}, publisher = {Elsevier}, volume = {35}, number = {6}, year = {2018}, doi = {10.1016/j.anihpc.2018.01.007}, mrnumber = {3846241}, zbl = {1398.37025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/} }
TY - JOUR AU - Liang, Chao AU - Marin, Karina AU - Yang, Jiagang TI - Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1687 EP - 1706 VL - 35 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/ DO - 10.1016/j.anihpc.2018.01.007 LA - en ID - AIHPC_2018__35_6_1687_0 ER -
%0 Journal Article %A Liang, Chao %A Marin, Karina %A Yang, Jiagang %T Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1687-1706 %V 35 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/ %R 10.1016/j.anihpc.2018.01.007 %G en %F AIHPC_2018__35_6_1687_0
Liang, Chao; Marin, Karina; Yang, Jiagang. Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1687-1706. doi : 10.1016/j.anihpc.2018.01.007. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.007/
[1] A. Avila, A. Eskin, M. Viana, Continuity of Lyapunov exponents of random matrix products (unpublished results).
[2] Holonomy invariance: rough regularity and applications to Lyapunov exponents, Astérisque, Volume 358 (2013), pp. 13–74 | Numdam | MR | Zbl
[3] Extremal Lyapunov exponents: an invariance principle and applications, Invent. Math., Volume 181 (2010), pp. 115–178 | DOI | MR | Zbl
[4] A. Avila, M. Viana, Stable accessibility with 2-dimensional, center (unpublished results).
[5] Continuity of Lyapunov exponents for cocycles with invariant holonomies, 2015 (Preprint) | arXiv | MR | Zbl
[6] Dimension and product structure of hyperbolic measures, Ann. Math., Volume 149 (1999), pp. 755–783 | DOI | MR | Zbl
[7] Genericity of zero Lyapunov exponents, Ergod. Theory Dyn. Syst., Volume 22 (2002), pp. 1667–1696 | DOI | MR | Zbl
[8] generic symplectic diffeomorphism: partial hyperbolicity and zero center Lyapunov exponents, J. Inst. Math. Jussieu, Volume 9 (2010), pp. 49–93 | DOI | MR | Zbl
[9] The Lyapunov exponents of generic volume preserving and symplectic systems, Ann. Math., Volume 161 (2005), pp. 1423–1485 | DOI | MR | Zbl
[10] Continuity of Lyapunov exponents for random 2d matrices, Ergod. Theory Dyn. Syst. (2016), pp. 1–30 | MR
[11] Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Mathematical Sciences, vol. 102, Springer-Verlag, 2005 | MR | Zbl
[12] Généricité d' exposants de Lyapunov non-nuls pour des produits déterministes de matrices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 579–624 | DOI | Numdam | MR | Zbl
[13] On the ergodicity of partially hyperbolic systems, Ann. Math., Volume 171 (2010), pp. 451–489 | DOI | MR | Zbl
[14] Non-commuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377–428 | DOI | MR | Zbl
[15] Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977 | DOI | MR | Zbl
[16] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., Volume 51 (1980), pp. 131–173 | DOI | Numdam | MR | Zbl
[17] Lyapunov Exponents, Lect. Notes Math., Volume vol. 1186, Springer-Verlag (1986), pp. 56–73 (Bremen, 1984) | DOI | MR | Zbl
[18] The metric entropy of diffeomorphisms II. Relations between entropy, exponents and dimension. Dimension and product structure of hyperbolic measures, Ann. Math., Volume 122 (1985), pp. 540–574 | DOI | MR | Zbl
[19] Lyapunov exponents of linear cocycles over Markov shifts, Stoch. Dyn., Volume 15 (2015), pp. 1–27 | DOI | MR | Zbl
[20] International Conference on Dynamical Systems, Longman (1996), pp. 110–119 (Montevideo, 1995) | MR | Zbl
[21] -density of (non-uniform) hyperbolicity in partially hyperbolic symplectic diffeomorphisms, Comment. Math. Helv., Volume 91 (2016), pp. 357–396 | DOI | MR | Zbl
[22] Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys, Volume 32 (1977) no. 4, pp. 55–114 | DOI | MR | Zbl
[23] Hölder foliations, revisited, J. Mod. Dyn., Volume 6 (2012), pp. 835–908 | MR | Zbl
[24] On the fundamental ideas of measure theory, Am. Math. Soc. Transl. (1), Volume 10 (1952), pp. 1–52 (transl. from: Math. Sb., 25, 1949, 107–150) | MR
[25] Global Stability of Dynamical Systems, Springer-Verlag, 1987 | DOI | MR | Zbl
[26] Stably ergodic approximation: two examples, Ergod. Theory Dyn. Syst., Volume 20 (2000), pp. 875–893 | DOI | MR | Zbl
[27] Lectures on Lyapunov Exponents, Cambridge University Press, 2014 | DOI | MR | Zbl
[28] Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 845–877 | DOI | Numdam | MR | Zbl
[29] A closing lemma for a class of symplectic diffeomorphisms, Nonlinearity, Volume 19 (2006), pp. 511–516 | MR | Zbl
Cité par Sources :