We study singularity structure of Yang–Mills flow in dimensions . First we obtain a description of the singular set in terms of concentration for a localized entropy quantity, which leads to an estimate of its Hausdorff dimension. We develop a theory of tangent measures for the flow, which leads to a stratification of the singular set. By a refined blowup analysis we obtain Yang–Mills connections or solitons as blowup limits at any point in the singular set.
@article{AIHPC_2018__35_6_1655_0, author = {Kelleher, Casey and Streets, Jeffrey}, title = {Singularity formation of the {Yang{\textendash}Mills} {Flow}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1655--1686}, publisher = {Elsevier}, volume = {35}, number = {6}, year = {2018}, doi = {10.1016/j.anihpc.2018.01.006}, mrnumber = {3846240}, zbl = {1402.37044}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/} }
TY - JOUR AU - Kelleher, Casey AU - Streets, Jeffrey TI - Singularity formation of the Yang–Mills Flow JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1655 EP - 1686 VL - 35 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/ DO - 10.1016/j.anihpc.2018.01.006 LA - en ID - AIHPC_2018__35_6_1655_0 ER -
%0 Journal Article %A Kelleher, Casey %A Streets, Jeffrey %T Singularity formation of the Yang–Mills Flow %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1655-1686 %V 35 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/ %R 10.1016/j.anihpc.2018.01.006 %G en %F AIHPC_2018__35_6_1655_0
Kelleher, Casey; Streets, Jeffrey. Singularity formation of the Yang–Mills Flow. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1655-1686. doi : 10.1016/j.anihpc.2018.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.006/
[1] An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrals is controlled, Proceeding of Symp. in Pure Math., vol. 44, AMS, 1986 (1–2) | DOI | MR | Zbl
[2] Monotonicity formula and small action regularity for Yang–Mills flows in higher dimensions, Calc. Var. Partial Differ. Equ., Volume 2 (1994) no. 4, pp. 389–403 | MR | Zbl
[3] Stabilities of homothetically shrinking Yang–Mills solitons | arXiv | DOI | Zbl
[4] The Geometry of Four-Manifolds, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York, 1990 Oxford Science Publications, MR1079726 (92a:57036) | MR | Zbl
[5] Global existence and convergence of smooth solutions to Yang–Mills gradient flow over compact four-manifolds | arXiv
[6] The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., Volume 22 (1972/1973), pp. 139–158 | DOI | MR | Zbl
[7] Singularities of first kind in the harmonic map and Yang–Mills heat flow, Math. Z., Volume 242 (2002), pp. 47–62 | DOI | MR | Zbl
[8] Monotonicity formulas for parabolic flows on manifolds, Commun. Anal. Geom., Volume 1 (1993) no. 1, pp. 127–137 | DOI | MR | Zbl
[9] Asymptotical behaviour of the Yang–Mills flow and singular Yang–Mills connections, Math. Ann., Volume 330 (2004), pp. 441–472 | MR | Zbl
[10] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995.
[11] Entropy, stability, and Yang–Mills flow | arXiv | DOI | Zbl
[12] Harmonic and quasi-harmonic spheres, Commun. Anal. Geom., Volume 7 (1999) no. 2, pp. 397–429 | MR | Zbl
[13] Harmonic and quasi-harmonic spheres, part II, Commun. Anal. Geom., Volume 10 (2002), pp. 341–375 | MR | Zbl
[14] Harmonic and quasi-harmonic spheres, part III. Rectifiability of the parabolic defect measure and generalized varifold flows, Ann. l'inst. Henri Poincaré C, Anal. Non Linéaire, Volume 19 (2002) no. 2, pp. 209–259 | Numdam | MR | Zbl
[15] Finite time blowing-up for the Yang–Mills gradient flow in higher dimensions, Hokkaido Math. J., Volume 23 (1994) no. 3, pp. 451–464 MR 1299637 (95i:58054) | DOI | MR | Zbl
[16] On the Yang–Mills heat equation in two and three dimensions, J. Reine Angew. Math., Volume 431 (1992), pp. 123–163 | MR | Zbl
[17] Lectures on Geometric Measure Theory, Proc. Center for Math. Anal., vol. 3, Australian Nat. Univ. Press, Canberra, 1983 | MR | Zbl
[18] The Yang–Mills flow in four dimensions, Calc. Var. Partial Differ. Equ., Volume 2 (1994) no. 2, pp. 123–150 | DOI | MR | Zbl
[19] Gauge theory and calibrated geometry I, Ann. Math. Second Ser., Volume 151 (2000) no. 1, pp. 193–268 | DOI | MR | Zbl
[20] Connections with -bounds on curvature, Commun. Math. Phys., Volume 83 (1982), pp. 31–42 | DOI | MR | Zbl
[21] Instantons and singularities in the Yang–Mills flow | arXiv | DOI | Zbl
[22] Singularity formation in the Yang–Mills flow, Calc. Var. Partial Differ. Equ., Volume 19 (2004) no. 2, pp. 211–220 | DOI | MR | Zbl
[23] Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., Volume 488 (1997), pp. 1–35 | MR | Zbl
Cité par Sources :