Construction and stability of blowup solutions for a non-variational semilinear parabolic system
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1577-1630.

Nous considérons le système parabolique suivant :

{tu=Δu+|v|p1v,tv=μΔv+|u|q1u,u(,0)=u0,v(,0)=v0,
dans tout l'espace RN, où p,q>1 et μ>0. Nous prouvons l'existence d'une donnée initiale telle que la solution associée explose en temps fini T(u0,v0) simultanément en u et v, et en un unique point a. Plus présicément, nous prouvons que cette solution a le comportement asymptotique suivant :
{u(x,t)Γ[(Tt)(1+b|xa|2(Tt)|log(Tt)|)](p+1)pq1,v(x,t)γ[(Tt)(1+b|xa|2(Tt)|log(Tt)|)](q+1)pq1,
avec b=b(p,q,μ)>0 et (Γ,γ)=(Γ(p,q),γ(p,q)). La construction de cette solution découle de la réduction du problème à un problème de dimension finie et un argument topologique basé sur la théorie de l'index pour conclure. Deux difficultés majeures se sont posées lors de la preuve :
  • – d'une part, le linearisé autour du profil n'est pas auto-adjoint, même pas pour μ=1 ;
  • – d'autre part, lorsque μ1, cela brise toute symmétrie dans le problème.
Dans la dernière section, grâce à une interprétation géométrique des paramètres du problème, nous prouvons la stabilité du comportement asymptotique des solutions construites par rapport à des perturbations dans les données initiales.

We consider the following parabolic system whose nonlinearity has no gradient structure:

{tu=Δu+|v|p1v,tv=μΔv+|u|q1u,u(,0)=u0,v(,0)=v0,
in the whole space RN, where p,q>1 and μ>0. We show the existence of initial data such that the corresponding solution to this system blows up in finite time T(u0,v0) simultaneously in u and v only at one blowup point a, according to the following asymptotic dynamics:
{u(x,t)Γ[(Tt)(1+b|xa|2(Tt)|log(Tt)|)](p+1)pq1,v(x,t)γ[(Tt)(1+b|xa|2(Tt)|log(Tt)|)](q+1)pq1,
with b=b(p,q,μ)>0 and (Γ,γ)=(Γ(p,q),γ(p,q)). The construction relies on the reduction of the problem to a finite dimensional one and a topological argument based on the index theory to conclude. Two major difficulties arise in the proof: the linearized operator around the profile is not self-adjoint even in the case μ=1; and the fact that the case μ1 breaks any symmetry in the problem. In the last section, through a geometrical interpretation of quantities of blowup parameters whose dimension is equal to the dimension of the finite dimensional problem, we are able to show the stability of these blowup behaviors with respect to perturbations in initial data.

DOI : 10.1016/j.anihpc.2018.01.003
Classification : 35K50, 35B40, 35K55, 35K57
Mots clés : Blowup solution, Blowup profile, Stability, Semilinear parabolic system
@article{AIHPC_2018__35_6_1577_0,
     author = {Ghoul, Tej-Eddine and Nguyen, Van Tien and Zaag, Hatem},
     title = {Construction and stability of blowup solutions for a non-variational semilinear parabolic system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1577--1630},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.01.003},
     mrnumber = {3846237},
     zbl = {1394.35222},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.003/}
}
TY  - JOUR
AU  - Ghoul, Tej-Eddine
AU  - Nguyen, Van Tien
AU  - Zaag, Hatem
TI  - Construction and stability of blowup solutions for a non-variational semilinear parabolic system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1577
EP  - 1630
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.003/
DO  - 10.1016/j.anihpc.2018.01.003
LA  - en
ID  - AIHPC_2018__35_6_1577_0
ER  - 
%0 Journal Article
%A Ghoul, Tej-Eddine
%A Nguyen, Van Tien
%A Zaag, Hatem
%T Construction and stability of blowup solutions for a non-variational semilinear parabolic system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1577-1630
%V 35
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.003/
%R 10.1016/j.anihpc.2018.01.003
%G en
%F AIHPC_2018__35_6_1577_0
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem. Construction and stability of blowup solutions for a non-variational semilinear parabolic system. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1577-1630. doi : 10.1016/j.anihpc.2018.01.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.01.003/

[1] Andreucci, D.; Herrero, M.A.; Velázquez, J.J.L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997) no. 1, pp. 1–53 | DOI | Numdam | MR | Zbl

[2] Berger, M.; Kohn, R.V. A rescaling algorithm for the numerical calculation of blowing-up solutions, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 841–863 | DOI | MR | Zbl

[3] Bricmont, J.; Kupiainen, A. Universality in blow-up for nonlinear heat equations, Nonlinearity, Volume 7 (1994) no. 2, pp. 539–575 http://stacks.iop.org/0951-7715/7/539 | DOI | MR | Zbl

[4] Caristi, G.; Mitidieri, E. Blow-up estimates of positive solutions of a parabolic system, J. Differ. Equ., Volume 113 (1994) no. 2, pp. 265–271 | DOI | MR | Zbl

[5] Côte, R.; Zaag, H. Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Commun. Pure Appl. Math., Volume 66 (2013) no. 10, pp. 1541–1581 | DOI | MR | Zbl

[6] Deng, K. Blow-up rates for parabolic systems, Z. Angew. Math. Phys., Volume 47 (1996) no. 1, pp. 132–143 | DOI | MR | Zbl

[7] Ebde, M.A.; Zaag, H. Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term, SeMA J. (2011) no. 55, pp. 5–21 | MR | Zbl

[8] Escobedo, M.; Herrero, M.A. Boundedness and blow up for a semilinear reaction–diffusion system, J. Differ. Equ., Volume 89 (1991) no. 1, pp. 176–202 | DOI | MR | Zbl

[9] Escobedo, M.; Herrero, M.A. A uniqueness result for a semilinear reaction–diffusion system, Proc. Am. Math. Soc., Volume 112 (1991) no. 1, pp. 175–185 | DOI | MR | Zbl

[10] Escobedo, M.; Herrero, M.A. A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. (4), Volume 165 (1993), pp. 315–336 | DOI | MR | Zbl

[11] Fermanian Kammerer, C.; Zaag, H. Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation, Nonlinearity, Volume 13 (2000) no. 4, pp. 1189–1216 | DOI | MR | Zbl

[12] Fermanian Kammerer, C.; Merle, F.; Zaag, H. Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann., Volume 317 (2000) no. 2, pp. 347–387 | DOI | MR | Zbl

[13] Fila, M.; Souplet, P. The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differ. Equ. Appl., Volume 8 (2001) no. 4, pp. 473–480 | DOI | MR | Zbl

[14] Filippas, S.; Kohn, R.V. Refined asymptotics for the blowup of utΔu=up , Commun. Pure Appl. Math., Volume 45 (1992) no. 7, pp. 821–869 | DOI | MR | Zbl

[15] Filippas, S.; Liu, W.X. On the blowup of multidimensional semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 3, pp. 313–344 | DOI | Numdam | MR | Zbl

[16] Friedman, A.; Giga, Y. A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 34 (1987) no. 1, pp. 65–79 | MR | Zbl

[17] Ghoul, T.; Masmoudi, N. Stability of infinite time blow up for the Patlak Keller Segel system, 2016 | arXiv

[18] Ghoul, T.; Nguyen, V.T.; Zaag, H. Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term, J. Differ. Equ., Volume 263 (2017) no. 8, pp. 4517–4564 | DOI | MR | Zbl

[19] Giga, Y.; Kohn, R.V. Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 3, pp. 297–319 | DOI | MR | Zbl

[20] Giga, Y.; Kohn, R.V. Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987) no. 1, pp. 1–40 | DOI | MR | Zbl

[21] Giga, Y.; Kohn, R.V. Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 845–884 | DOI | MR | Zbl

[22] Giga, Y.; Matsui, S.; Sasayama, S. Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., Volume 53 (2004) no. 2, pp. 483–514 | DOI | MR | Zbl

[23] Herrero, M.A.; Velázquez, J.J.L. Generic behaviour of one-dimensional blow up patterns, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 19 (1992) no. 3, pp. 381–450 | Numdam | MR | Zbl

[24] Herrero, M.A.; Velázquez, J.J.L. Flat blow-up in one-dimensional semilinear heat equations, Differ. Integral Equ., Volume 5 (1992) no. 5, pp. 973–997 | MR | Zbl

[25] Herrero, M.A.; Velázquez, J.J.L. Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 2, pp. 131–189 | DOI | Numdam | MR | Zbl

[26] Mahmoudi, N.; Souplet, P.; Tayachi, S. Improved conditions for single-point blow-up in reaction–diffusion systems, J. Differ. Equ., Volume 259 (2015) no. 5, pp. 1898–1932 | DOI | MR | Zbl

[27] Masmoudi, N.; Zaag, H. Blow-up profile for the complex Ginzburg–Landau equation, J. Funct. Anal., Volume 255 (2008) no. 7, pp. 1613–1666 | DOI | MR | Zbl

[28] Merle, F. Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., Volume 45 (1992) no. 3, pp. 263–300 | DOI | MR | Zbl

[29] Merle, F.; Zaag, H. Stability of the blow-up profile for equations of the type ut=Δu+|u|p1u , Duke Math. J., Volume 86 (1997) no. 1, pp. 143–195 | DOI | MR | Zbl

[30] Merle, F.; Raphaël, P.; Rodnianski, I. Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5–6, pp. 279–283 | DOI | MR | Zbl

[31] Nguyen, V.T.; Zaag, H. Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1275–1314 | DOI | MR | Zbl

[32] Nguyen, V.T.; Zaag, H. Finite degrees of freedom for the refined blow-up profile for a semilinear heat equation, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017) no. 4, pp. 1241–1282 http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_1241-1282.php | MR | Zbl

[33] Nouaili, N.; Zaag, H. Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Commun. Partial Differ. Equ., Volume 40 (2015) no. 7, pp. 1197–1217 | DOI | MR | Zbl

[34] Raphaël, P.; Rodnianski, I. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems, Publ. Math. Inst. Hautes Études Sci. (2012), pp. 1–122 | DOI | Numdam | MR | Zbl

[35] Raphaël, P.; Schweyer, R. On the stability of critical chemotactic aggregation, Math. Ann., Volume 359 (2014) no. 1–2, pp. 267–377 | DOI | MR | Zbl

[36] Schweyer, R. Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3922–3983 | DOI | MR | Zbl

[37] Souplet, P. Single-point blow-up for a semilinear parabolic system, J. Eur. Math. Soc., Volume 11 (2009) no. 1, pp. 169–188 | DOI | MR | Zbl

[38] Tayachi, S.; Zaag, H. Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, 2015 | arXiv | Zbl

[39] Velázquez, J.J.L. Higher-dimensional blow up for semilinear parabolic equations, Commun. Partial Differ. Equ., Volume 17 (1992) no. 9–10, pp. 1567–1596 | DOI | MR | Zbl

[40] Velázquez, J.J.L. Estimates on the (n1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 445–476 | DOI | MR | Zbl

[41] Velázquez, J.J.L. Classification of singularities for blowing up solutions in higher dimensions, Trans. Am. Math. Soc., Volume 338 (1993) no. 1, pp. 441–464 | DOI | MR | Zbl

[42] Zaag, H. Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 15 (1998) no. 5, pp. 581–622 | DOI | Numdam | MR | Zbl

[43] Zaag, H. A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 107–133 | DOI | MR | Zbl

Cité par Sources :