On well-posedness for some dispersive perturbations of Burgers' equation
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1719-1756.

We show that the Cauchy problem for a class of dispersive perturbations of Burgers' equations containing the low dispersion Benjamin–Ono equation

tuDxαxu=x(u2),0<α1,
is locally well-posed in Hs(R) when s>sα:=325α4. As a consequence, we obtain global well-posedness in the energy space Hα2(R) as soon as α2>sα, i.e. α>67.

DOI : 10.1016/j.anihpc.2017.12.004
Mots clés : Nonlinear dispersive equations, Benjamin–Ono type equations with low dispersion, Global well-posedness, Modified energy
@article{AIHPC_2018__35_7_1719_0,
     author = {Molinet, Luc and Pilod, Didier and Vento, St\'ephane},
     title = {On well-posedness for some dispersive perturbations of {Burgers'} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1719--1756},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.12.004},
     mrnumber = {3906854},
     zbl = {1459.76024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/}
}
TY  - JOUR
AU  - Molinet, Luc
AU  - Pilod, Didier
AU  - Vento, Stéphane
TI  - On well-posedness for some dispersive perturbations of Burgers' equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1719
EP  - 1756
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/
DO  - 10.1016/j.anihpc.2017.12.004
LA  - en
ID  - AIHPC_2018__35_7_1719_0
ER  - 
%0 Journal Article
%A Molinet, Luc
%A Pilod, Didier
%A Vento, Stéphane
%T On well-posedness for some dispersive perturbations of Burgers' equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1719-1756
%V 35
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/
%R 10.1016/j.anihpc.2017.12.004
%G en
%F AIHPC_2018__35_7_1719_0
Molinet, Luc; Pilod, Didier; Vento, Stéphane. On well-posedness for some dispersive perturbations of Burgers' equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1719-1756. doi : 10.1016/j.anihpc.2017.12.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.12.004/

[1] Angulo, J. Stability properties of solitary waves for fractional KdV and BBM equations, 2017 (preprint) | arXiv

[2] Arnesen, M.N. Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 3483–3510 | DOI | MR

[3] Bernicot, F. Uniform estimates for paraproducts and related multilinear multipliers, Rev. Mat. Iberoam., Volume 25 (2009) no. 3, pp. 1055–1088 | MR | Zbl

[4] Bona, J.L.; Smith, R. The initial value problem for the Korteweg–de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, Volume 278 (1975), pp. 555–601 | MR | Zbl

[5] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. The Schrödinger equation, Geom. Funct. Anal., Volume 3 (1993), pp. 157–178 | DOI | Zbl

[6] Burq, N.; Planchon, F. On well-posedness for the Benjamin–Ono equation, Math. Ann., Volume 340 (2008), pp. 497–542 | MR | Zbl

[7] Christ, M.; Kiselev, A. Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409–425 | DOI | MR | Zbl

[8] Coifman, R.; Meyer, Y. Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (in French) | Numdam | MR | Zbl

[9] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on R and T , J. Am. Math. Soc., Volume 16 (2003), pp. 705–749 | DOI | MR | Zbl

[10] Fonseca, G.; Linares, F.; Ponce, G. The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 763–790 | DOI | Numdam | MR | Zbl

[11] Ginibre, J. Séminaire Bourbaki 796, Astérisque, Volume 237 (1995), pp. 163–187 | Numdam | MR | Zbl

[12] Guo, Z. Local well-posedness for dispersion generalized Benjamin–Ono equations in Sobolev spaces, J. Differ. Equ., Volume 252 (2012), pp. 2053–2084 | MR | Zbl

[13] Herr, S.; Ionescu, A.; Kenig, C.E.; Koch, H. A para-differential renormalization technique for nonlinear dispersive equations, Commun. Partial Differ. Equ., Volume 35 (2010) no. 10, pp. 1827–1875 | DOI | MR | Zbl

[14] Ifrim, M.; Tataru, D. Well-posedness and dispersive decay of small data solutions for the Benjamin–Ono equation, Ann. Sci. Éc. Norm. Supér. (2017) (preprint, 2017 in press) | arXiv | MR | Zbl

[15] Ionescu, A.D.; Kenig, C.E. Global well-posedness of the Benjamin–Ono equation in low-regularity spaces, J. Am. Math. Soc., Volume 20 (2007), pp. 753–798 | MR | Zbl

[16] Ionescu, A.D.; Kenig, C.E.; Tataru, D. Global well-posedness of the KP-I initial value problem in the energy space, Invent. Math., Volume 173 (2008), pp. 265–304 | DOI | MR | Zbl

[17] Kenig, C.E.; Koenig, K.D. On the local well-posedness of the Benjamin–Ono and modified Benjamin–Ono equations, Math. Res. Lett., Volume 10 (2003), pp. 879–895 | DOI | MR | Zbl

[18] Kenig, C.E.; Ponce, G.; Vega, L. Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 33–69 | DOI | MR | Zbl

[19] Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527–620 | DOI | MR | Zbl

[20] Klein, C.; Saut, J.-C. A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Physica D, Volume 295–296 (2015), pp. 46–65 | MR | Zbl

[21] Koch, H.; Tzvetkov, N. On the local well-posedness of the Benjamin–Ono equation in Hs(R) , Int. Math. Res. Not., Volume 26 (2003), pp. 1449–1464 | MR | Zbl

[22] Linares, F.; Pilod, D.; Saut, J.-C. Dispersive perturbations of Burgers and hyperbolic equations I: local theory, SIAM J. Math. Anal., Volume 46 (2014), pp. 1505–1537 | DOI | MR | Zbl

[23] Linares, F.; Pilod, D.; Saut, J.-C. Remarks on the orbital stability of ground state solutions of fKdV e relative equations, Adv. Differ. Equ., Volume 20 (2015), pp. 835–858 | MR | Zbl

[24] Lions, J.L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications, vol. I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, New York, Heidelberg, 1972 (Translated from French by P. Kenneth) | MR | Zbl

[25] Molinet, L.; Saut, J.-C.; Tzvetkov, N. Ill-posedness issues for the Benjamin–Ono and related equations, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 982–988 | MR | Zbl

[26] Molinet, L.; Pilod, D. The Cauchy problem for the Benjamin–Ono equation in L2 revisited, Anal. PDE, Volume 5 (2012), pp. 365–395 | DOI | MR | Zbl

[27] Molinet, L.; Pilod, D.; Vento, S. Unconditional uniqueness for the modified Korteweg–de Vries equation on the line, Rev. Mat. Iberoam. (2014) (preprint, 2018 in press) | arXiv | MR | Zbl

[28] Molinet, L.; Pilod, D.; Vento, S. On unconditional well-posedness for the periodic modified Korteweg–de Vries equation, J. Math. Soc. Jpn. (2016) http://mathsoc.jp/publication/JMSJ/pdf/JMSJ7697.pdf (preprint, 2018 in press) | arXiv | MR | Zbl

[29] Molinet, L.; Vento, S. Improvement of the energy method for strongly non resonant dispersive equations and applications, Anal. PDE, Volume 8 (2015), pp. 1455–1496 | DOI | MR | Zbl

[30] Muscalu, C.; Pipher, J.; Tao, T.; Thiele, C. Bi-parameter paraproducts, Acta Math., Volume 193 (2004), pp. 269–296 | DOI | MR | Zbl

[31] Ponce, G. On the global well-posedness of the Benjamin–Ono equation, Differ. Integral Equ., Volume 4 (1991), pp. 527–542 | MR | Zbl

[32] Saut, J.C. Sur quelques généralisations de l'équation de KdV, J. Math. Pures Appl., Volume 58 (1979), pp. 21–61 | MR | Zbl

[33] Smith, H.; Sogge, C. Global Strichartz estimates for nontrapping perturbations of the Laplacian, Commun. Partial Differ. Equ., Volume 25 (2000) no. 11–12, pp. 2171–2183 | MR | Zbl

[34] Tao, T. Global well-posedness of the Benjamin–Ono equation in H1(R) , J. Hyperbolic Differ. Equ., Volume 1 (2004), pp. 27–49 | MR | Zbl

Cité par Sources :