We investigate the validity of the Gagliardo–Nirenberg type inequality
By the seminal contributions of E. Gagliardo and L. Nirenberg, (1) holds when are integers. It turns out that (1) holds for “most” of values of , but not for all of them. We present an explicit condition on which allows to decide whether (1) holds or fails.
@article{AIHPC_2018__35_5_1355_0, author = {Brezis, Ha{\"\i}m and Mironescu, Petru}, title = {Gagliardo{\textendash}Nirenberg inequalities and non-inequalities: {The} full story}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1355--1376}, publisher = {Elsevier}, volume = {35}, number = {5}, year = {2018}, doi = {10.1016/j.anihpc.2017.11.007}, mrnumber = {3813967}, zbl = {1401.46022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.007/} }
TY - JOUR AU - Brezis, Haïm AU - Mironescu, Petru TI - Gagliardo–Nirenberg inequalities and non-inequalities: The full story JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1355 EP - 1376 VL - 35 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.007/ DO - 10.1016/j.anihpc.2017.11.007 LA - en ID - AIHPC_2018__35_5_1355_0 ER -
%0 Journal Article %A Brezis, Haïm %A Mironescu, Petru %T Gagliardo–Nirenberg inequalities and non-inequalities: The full story %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1355-1376 %V 35 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.007/ %R 10.1016/j.anihpc.2017.11.007 %G en %F AIHPC_2018__35_5_1355_0
Brezis, Haïm; Mironescu, Petru. Gagliardo–Nirenberg inequalities and non-inequalities: The full story. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1355-1376. doi : 10.1016/j.anihpc.2017.11.007. http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.007/
[1] Sobolev Spaces, Pure Appl. Math. (Amst.), vol. 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl
[2] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37–86 | DOI | MR | Zbl
[3] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001) no. 4, pp. 387–404 (dedicated to the memory of Tosio Kato) | DOI | MR | Zbl
[4] Perfect Incompressible Fluids, Oxf. Lect. Ser. Math. Appl., vol. 14, The Clarendon Press Oxford University Press, New York, 1998 (translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie) | MR | Zbl
[5] Ondelettes, espaces d'interpolation et applications, Séminaire sur les Équations aux Dérivées Partielles, 1999–2000, École Polytech, Palaiseau, 2000 (pages Exp. No. I, 14 pp.) | Numdam | MR | Zbl
[6] Harmonic analysis of the space BV, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 235–263 | MR | Zbl
[7] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | DOI | MR | Zbl
[8] Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. Mat., Volume 8 (1959), pp. 24–51 | MR | Zbl
[9] Remarks on the estimation of Lebesgue functions of orthonormal systems, Mat. Sb. (N.S.), Volume 106(148) (1978) no. 3, pp. 380–385 (495) | MR | Zbl
[10] On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Volume 3 (1959) no. 13, pp. 115–162 | Numdam | MR | Zbl
[11] F. Oru, Rôle des oscillations dans quelques problèmes d'analyse non-linéaire, PhD thesis, ENS Cachan, 1998, unpublished.
[12] Mapping properties of nonlinear operators in spaces of Triebel–Lizorkin and Besov type, Anal. Math., Volume 12 (1986) no. 4, pp. 313–346 | DOI | MR | Zbl
[13] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl., vol. 3, Walter de Gruyter & Co., Berlin, 1996 | MR | Zbl
[14] Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., vol. 30, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[15] Theory of Function Spaces, Monogr. Math., vol. 78, Birkhäuser Verlag, Basel, 1983 | MR | Zbl
[16] Theory of Function Spaces. II, Monogr. Math., vol. 84, Birkhäuser Verlag, Basel, 1992 | MR | Zbl
Cité par Sources :