Recurrence for the wind-tree model
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 1-11.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we give a geometric criterion ensuring the recurrence of the vertical flow on Zd-covers of compact translation surfaces (d2). We prove that the linear flow in the wind-tree model is recurrent for every pair of parameters and almost every direction.

DOI : 10.1016/j.anihpc.2017.11.006
Classification : 37C15, 37B10
Mots-clés : Polygonal billiards, Periodic translation surfaces, Recurrence
Avila, A. 1, 2 ; Hubert, P. 3

1 Universität Zürich, Institut für Mathematik, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 IMPA, Estrada Dona Castorina, 110, 22460-320, Rio de Janeiro, Brazil
3 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
@article{AIHPC_2020__37_1_1_0,
     author = {Avila, A. and Hubert, P.},
     title = {Recurrence for the wind-tree model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--11},
     publisher = {Elsevier},
     volume = {37},
     number = {1},
     year = {2020},
     doi = {10.1016/j.anihpc.2017.11.006},
     mrnumber = {4049914},
     zbl = {1436.37006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/}
}
TY  - JOUR
AU  - Avila, A.
AU  - Hubert, P.
TI  - Recurrence for the wind-tree model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1
EP  - 11
VL  - 37
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/
DO  - 10.1016/j.anihpc.2017.11.006
LA  - en
ID  - AIHPC_2020__37_1_1_0
ER  - 
%0 Journal Article
%A Avila, A.
%A Hubert, P.
%T Recurrence for the wind-tree model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1-11
%V 37
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/
%R 10.1016/j.anihpc.2017.11.006
%G en
%F AIHPC_2020__37_1_1_0
Avila, A.; Hubert, P. Recurrence for the wind-tree model. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 1-11. doi : 10.1016/j.anihpc.2017.11.006. http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/

[1] Athreya, J. Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedic., Volume 119 (2006), pp. 121–140 | DOI | MR | Zbl

[2] Chaika, J.; Eskin, A. Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., Volume 9 (2015), pp. 1–23 | MR | Zbl

[3] Delecroix, V. Divergent directions in some periodic wind-tree models, J. Mod. Dyn., Volume 7 (2013) no. 1, pp. 1–29 | MR | Zbl

[4] Delecroix, V.; Hubert, P.; Lelièvre, S. Diffusion for the wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014) no. 6, pp. 1085–1110 | MR | Zbl

[5] Ehrenfest, T., Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Cornell University Press, Itacha NY (1912), pp. 10–13 90 S (in German), translated in: M.J. Moravicsik (trans.), The Conceptual Foundations of the Statistical Approach in Mechanics, 1959 | JFM | MR

[6] Eskin, A.; Masur, H. Asymptotic formulas on flat surfaces, Ergod. Theory Dyn. Syst., Volume 21 (2001) no. 2, pp. 443–478 | DOI | MR | Zbl

[7] Eskin, A.; Marklof, J.; Witte Morris, D. Unipotent flows on the space of branched covers of Veech surfaces, Ergod. Theory Dyn. Syst., Volume 26 (2006) no. 1, pp. 129–162 | DOI | MR | Zbl

[8] A. Eskin, M. Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, preprint. | Numdam | MR

[9] Eskin, A.; Mirzakhani, M.; Mohammadi, A. Isolation, equidistribution, and orbit closures for the SL(2,R) action on moduli space, Ann. Math. (2), Volume 182 (2015) no. 2, pp. 673–721 | MR | Zbl

[10] Frączek, K.; Ulcigrai, C. Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math., Volume 197 (2014) no. 2, pp. 241–298 | DOI | MR | Zbl

[11] Hooper, P.; Weiss, B. Generalized staircases: recurrence and symmetry, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 4, pp. 1581–1600 | DOI | Numdam | MR | Zbl

[12] Hubert, P.; Lelièvre, S.; Troubetzkoy, S. The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., Volume 656 (2011), pp. 223–244 | MR | Zbl

[13] Masur, H. Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982), pp. 169–200 | DOI | MR | Zbl

[14] Masur, H. Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., Volume 66 (1992), pp. 387–442 | DOI | MR | Zbl

[15] McMullen, C. Dynamics of SL2(R) over moduli space in genus two, Ann. Math. (2), Volume 165 (2007) no. 2, pp. 397–456 | DOI | MR | Zbl

[16] Veech, W. Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), Volume 115 (1982) no. 1, pp. 201–242 | MR | Zbl

[17] Viana, M. Ergodic theory of interval exchange maps, Rev. Mat. Complut., Volume 19 (2006) no. 1, pp. 7–100 | DOI | MR | Zbl

[18] Zorich, A. Flat Surfaces, Frontiers in Number Theory, Physics, and Geometry I, Springer, Berlin (2006), pp. 437–583 | MR | Zbl

Cité par Sources :