In this paper, we give a geometric criterion ensuring the recurrence of the vertical flow on -covers of compact translation surfaces (). We prove that the linear flow in the wind-tree model is recurrent for every pair of parameters and almost every direction.
Mots-clés : Polygonal billiards, Periodic translation surfaces, Recurrence
@article{AIHPC_2020__37_1_1_0, author = {Avila, A. and Hubert, P.}, title = {Recurrence for the wind-tree model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--11}, publisher = {Elsevier}, volume = {37}, number = {1}, year = {2020}, doi = {10.1016/j.anihpc.2017.11.006}, mrnumber = {4049914}, zbl = {1436.37006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/} }
TY - JOUR AU - Avila, A. AU - Hubert, P. TI - Recurrence for the wind-tree model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1 EP - 11 VL - 37 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/ DO - 10.1016/j.anihpc.2017.11.006 LA - en ID - AIHPC_2020__37_1_1_0 ER -
Avila, A.; Hubert, P. Recurrence for the wind-tree model. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 1-11. doi : 10.1016/j.anihpc.2017.11.006. http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.006/
[1] Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedic., Volume 119 (2006), pp. 121–140 | DOI | MR | Zbl
[2] Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., Volume 9 (2015), pp. 1–23 | MR | Zbl
[3] Divergent directions in some periodic wind-tree models, J. Mod. Dyn., Volume 7 (2013) no. 1, pp. 1–29 | MR | Zbl
[4] Diffusion for the wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014) no. 6, pp. 1085–1110 | MR | Zbl
[5] , Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Cornell University Press, Itacha NY (1912), pp. 10–13 90 S (in German), translated in: M.J. Moravicsik (trans.), The Conceptual Foundations of the Statistical Approach in Mechanics, 1959 | JFM | MR
[6] Asymptotic formulas on flat surfaces, Ergod. Theory Dyn. Syst., Volume 21 (2001) no. 2, pp. 443–478 | DOI | MR | Zbl
[7] Unipotent flows on the space of branched covers of Veech surfaces, Ergod. Theory Dyn. Syst., Volume 26 (2006) no. 1, pp. 129–162 | DOI | MR | Zbl
[8] A. Eskin, M. Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, preprint. | Numdam | MR
[9] Isolation, equidistribution, and orbit closures for the action on moduli space, Ann. Math. (2), Volume 182 (2015) no. 2, pp. 673–721 | MR | Zbl
[10] Non-ergodic -periodic billiards and infinite translation surfaces, Invent. Math., Volume 197 (2014) no. 2, pp. 241–298 | DOI | MR | Zbl
[11] Generalized staircases: recurrence and symmetry, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 4, pp. 1581–1600 | DOI | Numdam | MR | Zbl
[12] The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., Volume 656 (2011), pp. 223–244 | MR | Zbl
[13] Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982), pp. 169–200 | DOI | MR | Zbl
[14] Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., Volume 66 (1992), pp. 387–442 | DOI | MR | Zbl
[15] Dynamics of over moduli space in genus two, Ann. Math. (2), Volume 165 (2007) no. 2, pp. 397–456 | DOI | MR | Zbl
[16] Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), Volume 115 (1982) no. 1, pp. 201–242 | MR | Zbl
[17] Ergodic theory of interval exchange maps, Rev. Mat. Complut., Volume 19 (2006) no. 1, pp. 7–100 | DOI | MR | Zbl
[18] Flat Surfaces, Frontiers in Number Theory, Physics, and Geometry I, Springer, Berlin (2006), pp. 437–583 | MR | Zbl
Cité par Sources :