Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1119-1142.

In this paper, we prove the well-posedness of the linearized Prandtl equation around a non-monotonic shear flow in Gevrey class 2θ for any θ>0. This result is almost optimal by the ill-posedness result proved by Gérard-Varet and Dormy, who construct a class of solution with the growth like ekt for the linearized Prandtl equation around a non-monotonic shear flow.

DOI : 10.1016/j.anihpc.2017.11.001
Mots clés : Prandtl equation, Gevrey class, Well-posedness
@article{AIHPC_2018__35_4_1119_0,
     author = {Chen, Dongxiang and Wang, Yuxi and Zhang, Zhifei},
     title = {Well-posedness of the linearized {Prandtl} equation around a non-monotonic shear flow},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1119--1142},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.11.001},
     mrnumber = {3795028},
     zbl = {1392.35220},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.001/}
}
TY  - JOUR
AU  - Chen, Dongxiang
AU  - Wang, Yuxi
AU  - Zhang, Zhifei
TI  - Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1119
EP  - 1142
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.001/
DO  - 10.1016/j.anihpc.2017.11.001
LA  - en
ID  - AIHPC_2018__35_4_1119_0
ER  - 
%0 Journal Article
%A Chen, Dongxiang
%A Wang, Yuxi
%A Zhang, Zhifei
%T Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1119-1142
%V 35
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.001/
%R 10.1016/j.anihpc.2017.11.001
%G en
%F AIHPC_2018__35_4_1119_0
Chen, Dongxiang; Wang, Yuxi; Zhang, Zhifei. Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1119-1142. doi : 10.1016/j.anihpc.2017.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.11.001/

[1] Alexandre, R.; Wang, Y.; Xu, C.-J.; Yang, T. Well-posedness of the Prandtl equation in Sobolev spaces, J. Am. Math. Soc., Volume 28 (2015), pp. 745–784 | MR | Zbl

[2] D. Chen, Y. Wang, Z. Zhang, Well-posedness of the Prandtl equation with monotonicity in Sobolev Spaces, submitted for publication. | MR

[3] Gérard-Varet, D.; Dormy, E. On the ill-posedness of the Prandtl equation, J. Am. Math. Soc., Volume 23 (2010), pp. 591–609 | MR | Zbl

[4] Gérard-Varet, D.; Masmoudi, N. Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1273–1325 | MR | Zbl

[5] Gérard-Varet, D.; Nguyen, T. Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., Volume 77 (2012), pp. 71–88 | MR | Zbl

[6] Guo, Y.; Nguyen, T. A note on Prandtl boundary layers, Commun. Pure Appl. Math., Volume 64 (2011), pp. 1416–1438 | MR | Zbl

[7] Kukavica, I.; Masmoudi, N.; Vicol, V.; Wong, T.K. On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., Volume 46 (2014), pp. 3865–3890 | DOI | MR | Zbl

[8] Li, W.; Yang, T. Well-posedness in Gevrey space for the Prandtl equations with non-degenerate critical points | arXiv | DOI | Zbl

[9] Lombardo, M.C.; Cannone, M.; Sammartino, M. Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 987–1004 | DOI | MR | Zbl

[10] Masmoudi, N.; Wong, T.K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., Volume 68 (2015), pp. 1683–1741 | DOI | MR

[11] Oleinik, O.A.; Samokhin, V.N. Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl

[12] Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlung des III Intern. Math.-Kongresses, Heidelberg, 1904, pp. 484–491 | JFM

[13] Sammartino, M.; Caflisch, R.E. Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., Volume 192 (1998), pp. 433–461 | MR | Zbl

[14] Xin, Z.; Zhang, L. On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88–133 | MR | Zbl

[15] Zhang, P.; Zhang, Z. Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., Volume 270 (2016), pp. 2591–2615 | DOI | MR | Zbl

Cité par Sources :