Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in Lloc2(R3)
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1019-1039.

We prove the existence of a forward discretely self-similar solutions to the Navier–Stokes equations in R3×(0,+) for a discretely self-similar initial velocity belonging to Lloc2(R3).

DOI : 10.1016/j.anihpc.2017.10.001
Classification : 76B03, 35Q31
Mots clés : Navier–Stokes equations, Existence, Discretely self-similar solutions
@article{AIHPC_2018__35_4_1019_0,
     author = {Chae, Dongho and Wolf, J\"org},
     title = {Existence of discretely self-similar solutions to the {Navier{\textendash}Stokes} equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1019--1039},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.10.001},
     mrnumber = {3795025},
     zbl = {1391.76057},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/}
}
TY  - JOUR
AU  - Chae, Dongho
AU  - Wolf, Jörg
TI  - Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1019
EP  - 1039
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/
DO  - 10.1016/j.anihpc.2017.10.001
LA  - en
ID  - AIHPC_2018__35_4_1019_0
ER  - 
%0 Journal Article
%A Chae, Dongho
%A Wolf, Jörg
%T Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1019-1039
%V 35
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/
%R 10.1016/j.anihpc.2017.10.001
%G en
%F AIHPC_2018__35_4_1019_0
Chae, Dongho; Wolf, Jörg. Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1019-1039. doi : 10.1016/j.anihpc.2017.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/

[1] Bradshaw, Z.; Tsai, T.-P. Forward discretely self-similar solutions of the Navier–Stokes equations II, Ann. Henri Poincaré, Volume 18 (2017) no. 3, pp. 1095–1119 | DOI | MR | Zbl

[2] Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771–831 | DOI | MR | Zbl

[3] Chae, D.; Wolf, J. Removing discretely self-similar singularities for the 3D Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 42 (2017) no. 9, pp. 1359–1374 | DOI | MR | Zbl

[4] Galdi, G.; Simader, C.; Sohr, H. On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4), Volume 167 (1994), pp. 147–163 | DOI | MR | Zbl

[5] Jia, H.; Šverák, V. Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions, Invent. Math., Volume 196 (2014), pp. 233–265 | MR | Zbl

[6] Kikuchi, N.; Seregin, G.A. Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Transl. Am. Math. Soc. (2), vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 141–164 | MR | Zbl

[7] Koch, H.; Tataru, D. Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22–35 | DOI | MR | Zbl

[8] Lemariè-Rieusset, P.G. Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math., vol. 431, Chapman Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl

[9] Leray, J. Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–284 | DOI | JFM | MR

[10] Scheffer, V. Partial regularity of solutions to the Navier–Stokes equations, Pac. J. Math., Volume 66 (1976), pp. 535–552 | DOI | MR | Zbl

[11] Tsai, T.-P. Forward discretely self-similar solutions of the Navier–Stokes equations, Commun. Math. Phys., Volume 328 (2014), pp. 29–44 | MR | Zbl

[12] Wolf, J. On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations, Ann. Univ. Ferrara, Volume 61 (2015), pp. 149–171 | DOI | MR | Zbl

[13] Wolf, J. On the local pressure of the Navier–Stokes equations and related systems, Adv. Differ. Equ., Volume 22 (2017) no. 5/6, pp. 305–338 | MR

Cité par Sources :