We prove the existence of a forward discretely self-similar solutions to the Navier–Stokes equations in for a discretely self-similar initial velocity belonging to .
Mots clés : Navier–Stokes equations, Existence, Discretely self-similar solutions
@article{AIHPC_2018__35_4_1019_0, author = {Chae, Dongho and Wolf, J\"org}, title = {Existence of discretely self-similar solutions to the {Navier{\textendash}Stokes} equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1019--1039}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.10.001}, mrnumber = {3795025}, zbl = {1391.76057}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/} }
TY - JOUR AU - Chae, Dongho AU - Wolf, Jörg TI - Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1019 EP - 1039 VL - 35 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/ DO - 10.1016/j.anihpc.2017.10.001 LA - en ID - AIHPC_2018__35_4_1019_0 ER -
%0 Journal Article %A Chae, Dongho %A Wolf, Jörg %T Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$ %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1019-1039 %V 35 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/ %R 10.1016/j.anihpc.2017.10.001 %G en %F AIHPC_2018__35_4_1019_0
Chae, Dongho; Wolf, Jörg. Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in $ {L}_{loc}^{2}({\mathbb{R}}^{3})$. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1019-1039. doi : 10.1016/j.anihpc.2017.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.10.001/
[1] Forward discretely self-similar solutions of the Navier–Stokes equations II, Ann. Henri Poincaré, Volume 18 (2017) no. 3, pp. 1095–1119 | DOI | MR | Zbl
[2] Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771–831 | DOI | MR | Zbl
[3] Removing discretely self-similar singularities for the 3D Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 42 (2017) no. 9, pp. 1359–1374 | DOI | MR | Zbl
[4] On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4), Volume 167 (1994), pp. 147–163 | DOI | MR | Zbl
[5] Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions, Invent. Math., Volume 196 (2014), pp. 233–265 | MR | Zbl
[6] Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Transl. Am. Math. Soc. (2), vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 141–164 | MR | Zbl
[7] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22–35 | DOI | MR | Zbl
[8] Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math., vol. 431, Chapman Hall/CRC, Boca Raton, FL, 2002 | MR | Zbl
[9] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–284 | DOI | JFM | MR
[10] Partial regularity of solutions to the Navier–Stokes equations, Pac. J. Math., Volume 66 (1976), pp. 535–552 | DOI | MR | Zbl
[11] Forward discretely self-similar solutions of the Navier–Stokes equations, Commun. Math. Phys., Volume 328 (2014), pp. 29–44 | MR | Zbl
[12] On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations, Ann. Univ. Ferrara, Volume 61 (2015), pp. 149–171 | DOI | MR | Zbl
[13] On the local pressure of the Navier–Stokes equations and related systems, Adv. Differ. Equ., Volume 22 (2017) no. 5/6, pp. 305–338 | MR
Cité par Sources :