Spatially discrete reaction–diffusion equations with discontinuous hysteresis
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1041-1077.

We address the question: Why may reaction–diffusion equations with hysteretic nonlinearities become ill-posed and how to amend this? To do so, we discretize the spatial variable and obtain a lattice dynamical system with a hysteretic nonlinearity. We analyze a new mechanism that leads to appearance of a spatio-temporal pattern called rattling: the solution exhibits a propagation phenomenon different from the classical traveling wave, while the hysteretic nonlinearity, loosely speaking, takes a different value at every second spatial point, independently of the grid size. Such a dynamics indicates how one should redefine hysteresis to make the continuous problem well-posed and how the solution will then behave. In the present paper, we develop main tools for the analysis of the spatially discrete model and apply them to a prototype case. In particular, we prove that the propagation velocity is of order at1/2 as t and explicitly find the rate a.

DOI : 10.1016/j.anihpc.2017.09.006
Mots clés : Hysteresis, Pattern formation, Reaction–diffusion equations, Rattling, Spatial discretisation, Lattice dynamics
@article{AIHPC_2018__35_4_1041_0,
     author = {Gurevich, Pavel and Tikhomirov, Sergey},
     title = {Spatially discrete reaction{\textendash}diffusion equations with discontinuous hysteresis},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1041--1077},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.09.006},
     mrnumber = {3795026},
     zbl = {1391.34026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.006/}
}
TY  - JOUR
AU  - Gurevich, Pavel
AU  - Tikhomirov, Sergey
TI  - Spatially discrete reaction–diffusion equations with discontinuous hysteresis
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1041
EP  - 1077
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.006/
DO  - 10.1016/j.anihpc.2017.09.006
LA  - en
ID  - AIHPC_2018__35_4_1041_0
ER  - 
%0 Journal Article
%A Gurevich, Pavel
%A Tikhomirov, Sergey
%T Spatially discrete reaction–diffusion equations with discontinuous hysteresis
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1041-1077
%V 35
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.006/
%R 10.1016/j.anihpc.2017.09.006
%G en
%F AIHPC_2018__35_4_1041_0
Gurevich, Pavel; Tikhomirov, Sergey. Spatially discrete reaction–diffusion equations with discontinuous hysteresis. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1041-1077. doi : 10.1016/j.anihpc.2017.09.006. http://www.numdam.org/articles/10.1016/j.anihpc.2017.09.006/

[1] Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55, 1965 | MR | Zbl

[2] Aiki, T.; Kopfová, J. Recent Advances in Nonlinear Analysis – Proceedings of the International Conference on Nonlinear Analysis (2006) (Hsinchu, Taiwan)

[3] Alt, H.W. On the thermostat problem, Control Cybern., Volume 14 (1985), pp. 171–193 | MR

[4] Amos, D.E. Computation of modified Bessel functions and their ratios, Math. Comput., Volume 47 (1974), pp. 239–251 | MR | Zbl

[5] Apushkinskaya, D.; Uraltseva, N. On regularity properties of solutions to the hysteresis-type problems, Interfaces Free Bound., Volume 17 (2015), pp. 93–115 | DOI | MR | Zbl

[6] Apushkinskaya, D.; Uraltseva, N. Free boundaries in problems with hysteresis, Philos. Trans. A, Volume 373 (2015) | MR | Zbl

[7] Brokate, M.; Sprekels, J. Hysteresis and Phase Transitions, Springer, 1996 | MR | Zbl

[8] Caffarelli, L.; Salsa, S. A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, vol. 68, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[9] Curran, M. Local Well-Posedness of a Reaction–Diffusion Equation with Hysteresis, Free University of Berlin, 2014 (Masters Thesis)

[10] Gurevich, P. Asymptotics of parabolic Green's functions on lattices, Algebra Anal., Volume 28 (2016) no. 5, pp. 21–60 (English transl.: St. Petersburg Math. J., 2017) | Zbl

[11] Gurevich, P.; Tikhomirov, S. Uniqueness of transverse solutions for reaction–diffusion equations with spatially distributed hysteresis, Nonlinear Anal., Volume 75 (2012), pp. 6610–6619 | DOI | MR | Zbl

[12] Gurevich, P.; Shamin, R.; Tikhomirov, S. Reaction–diffusion equations with spatially distributed hysteresis, SIAM J. Math. Anal., Volume 4 (2013), pp. 1328–1355 | MR | Zbl

[13] Gurevich, P.; Tikhomirov, S. Systems of reaction–diffusion equations with spatially distributed hysteresis, Math. Bohem., Volume 139 (2014), pp. 239–257 | DOI | MR | Zbl

[14] Gurevich, P.; Tikhomirov, S. Error estimates for Riemann sums of some singular functions | arXiv

[15] Hoppensteadt, F.C.; Jäger, W.; Jäger, W.; Rost, H.; Tautu, P. Pattern formation by bacteria, Lecture Notes in Biomath, vol. 38, Springer, Berlin, 1980, pp. 68–81 | MR | Zbl

[16] Hoppensteadt, F.C.; Jäger, W.; Pöppe, C.; Jäger, W.; Murray, J.D. A hysteresis model for bacterial growth patterns, Modelling of Patterns in Space and Time, Lect. Notes Biomath., vol. 55, Springer, Berlin, 1984, pp. 123–134 | DOI | MR

[17] Il'in, A.M.; Markov, B.A. A nonlinear diffusion equation and Liesegang rings, Dokl. Math., Volume 84 (2011), pp. 730–733 | MR | Zbl

[18] Kopfová, J. Proceedings of the Conference “International Workshop on Multi-Rate Processes and Hysteresis”, J. Phys. Conf. Ser., Volume 55 (2007), pp. 130–134

[19] Krasnosel'skii, M.A.; Pokrovskii, A.V. Systems with Hysteresis, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | DOI | Zbl

[19] , Nauka, Moscow, 1983 (Translated from Russian: Sistemy s Gisterezisom)

[20] Krejčí, P. Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto International Series. Mathematical Sciences and Applications, vol. 8, Gakkotosho Co., Ltd., Tokyo, 1996 | MR | Zbl

[21] Mayergoyz, I.D. Mathematical Models of Hysteresis, Springer, 1991 | DOI | MR | Zbl

[22] Mielke, A. Evolution of rate-independent systems, Evolutionary Equations, Handb. Differ. Equ., vol. II, Elsevier/North-Holland, Amsterdam, 2005, pp. 461–559 | MR | Zbl

[23] Petrosyan, A.; Shahgholian, H.; Uraltseva, N. Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, vol. 36, 2012 | DOI | MR | Zbl

[24] Shahgholian, H.; Uraltseva, N.; Weiss, G. A parabolic two-phase obstacle-like equation, Adv. Math., Volume 221 (2009), pp. 861–881 | DOI | MR | Zbl

[25] Visintin, A. Evolution problems with hysteresis in the source term, SIAM J. Math. Anal., Volume 17 (1986), pp. 1113–1138 | DOI | MR | Zbl

[26] Visintin, A. Differential Models of Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | MR | Zbl

[27] Visintin, A. Ten issues about hysteresis, Acta Appl. Math., Volume 132 (2014), pp. 635–647 | DOI | MR | Zbl

Cité par Sources :