In this paper we prove that any smooth surfaces can be locally isometrically embedded into as Lagrangian surfaces. As a byproduct we obtain that any smooth surfaces are Hessian surfaces.
Mots clés : Hessian metric, Local embedding, Lagrangian surfaces, Gauss–Codazzi system
@article{AIHPC_2018__35_3_675_0, author = {Han, Qing and Wang, Guofang}, title = {Hessian surfaces and local {Lagrangian} embeddings}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {675--685}, publisher = {Elsevier}, volume = {35}, number = {3}, year = {2018}, doi = {10.1016/j.anihpc.2017.07.003}, mrnumber = {3778647}, zbl = {1385.53072}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.003/} }
TY - JOUR AU - Han, Qing AU - Wang, Guofang TI - Hessian surfaces and local Lagrangian embeddings JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 675 EP - 685 VL - 35 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.003/ DO - 10.1016/j.anihpc.2017.07.003 LA - en ID - AIHPC_2018__35_3_675_0 ER -
%0 Journal Article %A Han, Qing %A Wang, Guofang %T Hessian surfaces and local Lagrangian embeddings %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 675-685 %V 35 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.003/ %R 10.1016/j.anihpc.2017.07.003 %G en %F AIHPC_2018__35_3_675_0
Han, Qing; Wang, Guofang. Hessian surfaces and local Lagrangian embeddings. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 675-685. doi : 10.1016/j.anihpc.2017.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2017.07.003/
[1] Curvature of Hessian manifolds, Differ. Geom. Appl., Volume 33 (2014), pp. 1–12 | DOI | MR | Zbl
[2] Methods of Information Geometry, Transl. Math. Monogr., vol. 191, American Mathematical Society, Providence, 2000 | MR | Zbl
[3] Dually flat manifolds and global information geometry, Open Syst. Inf. Dyn., Volume 9 (2002), pp. 195–200 | MR | Zbl
[4] http://mathoverflow.net/questions/122308/
, 2013[5] Lectures on Symplectic Geometry, Lect. Notes Math., vol. 1764, Springer-Verlag, Berlin, 2001 | MR | Zbl
[6] Legendrian energy minimizers. I. Heisenberg group target, Calc. Var. Partial Differ. Equ., Volume 12 (2001), pp. 145–171 | DOI | MR | Zbl
[7] Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form, Tohoku Math. J., Volume 45 (1993), pp. 565–582 | DOI | MR | Zbl
[8] On totally real flat surfaces, Boll. Unione Mat. Ital., A (5), Volume 15 (1978), pp. 370–378 | MR | Zbl
[9] Riemannian geometry of Lagrangian submanifolds, Taiwan. J. Math., Volume 5 (2001), pp. 681–723 | MR | Zbl
[10] Lagrangian isometric immersions of a real-space-form into a complex space form , Math. Proc. Camb. Philos. Soc., Volume 124 (1998), pp. 107–125 | MR | Zbl
[11] On the regularity of the Monge–Ampère equation , Commun. Pure Appl. Math., Volume 30 (1977), pp. 41–68 | MR | Zbl
[12] Open problems in affine differential geometry and related topics, Interdiscip. Inf. Sci., Volume 4 (1999), pp. 125–127 | MR | Zbl
[13] Special Kähler manifolds, Commun. Math. Phys., Volume 203 (1999), pp. 31–52 | DOI | MR | Zbl
[14] Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Math. Surv. Monogr., vol. 130, American Mathematical Society, Providence, 2006 | DOI | MR | Zbl
[15] The moduli space of complex Lagrangian submanifolds, Asian J. Math., Volume 3 (1999), pp. 77–91 | DOI | MR | Zbl
[16] Sur la possibilité de plonger un espace riemannian donné dans un espace euclidien, Ann. Soc. Pol. Math., Volume 5 (1926), pp. 38–43 | JFM
[17] Affine manifolds, SYZ geometry and the “Y” vertex, J. Differ. Geom., Volume 71 (2005), pp. 129–158 | DOI | MR | Zbl
[18] On isometric Lagrangian immersions, Ill. J. Math., Volume 45 (2001), pp. 833–849 | MR | Zbl
[19] Interior-Point Polynomial Algorithms in Convex Programming, vol. 13, SIAM, 1994 | MR | Zbl
[20] Isometric embeddings of two-dimensional Riemannian metrics in Euclidean space, Russ. Math. Surv., Volume 28 (1973) no. 4, pp. 47–76 | MR | Zbl
[21] The Geometry of Hessian Structures, World Scientific, 2007 | DOI | MR | Zbl
[22] Lectures on Symplectic Manifolds, CBMS Reg. Conf. Ser. Math., vol. 29, American Mathematical Society, Providence, 1977 | DOI | MR | Zbl
Cité par Sources :