In this paper, we study the dynamics of a system of infinitely many fermions in dimensions near thermal equilibrium and prove scattering in the case of small perturbation around equilibrium in a certain generalized Sobolev space of density operators. This work is a continuation of our previous paper [11], and extends the important recent result of M. Lewin and J. Sabin in [19] of a similar type for dimension . In the work at hand, we establish new, improved Strichartz estimates that allow us to control the case .
@article{AIHPC_2018__35_2_393_0, author = {Chen, Thomas and Hong, Younghun and Pavlovi\'c, Nata\v{s}a}, title = {On the scattering problem for infinitely many fermions in dimensions \protect\emph{d} \ensuremath{\geq}3 at positive temperature}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {393--416}, publisher = {Elsevier}, volume = {35}, number = {2}, year = {2018}, doi = {10.1016/j.anihpc.2017.05.002}, mrnumber = {3765547}, zbl = {1383.81366}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/} }
TY - JOUR AU - Chen, Thomas AU - Hong, Younghun AU - Pavlović, Nataša TI - On the scattering problem for infinitely many fermions in dimensions d ≥3 at positive temperature JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 393 EP - 416 VL - 35 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/ DO - 10.1016/j.anihpc.2017.05.002 LA - en ID - AIHPC_2018__35_2_393_0 ER -
%0 Journal Article %A Chen, Thomas %A Hong, Younghun %A Pavlović, Nataša %T On the scattering problem for infinitely many fermions in dimensions d ≥3 at positive temperature %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 393-416 %V 35 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/ %R 10.1016/j.anihpc.2017.05.002 %G en %F AIHPC_2018__35_2_393_0
Chen, Thomas; Hong, Younghun; Pavlović, Nataša. On the scattering problem for infinitely many fermions in dimensions d ≥3 at positive temperature. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 393-416. doi : 10.1016/j.anihpc.2017.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2017.05.002/
[1] On the generalized semi-relativistic Schrödinger–Poisson system in , Doc. Math., Volume 18 (2013), pp. 343–357 | MR | Zbl
[2] Derivation of the Schrödinger–Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 515–520 | DOI | MR | Zbl
[3] Mean field dynamics of fermions and the time-dependent Hartree–Fock equation, J. Math. Pures Appl., Volume 9 (2003) no. 82, pp. 665–683 | MR | Zbl
[4] Mean-field evolution of fermionic systems, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1087–1131 | DOI | MR | Zbl
[5] Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not. (1998) no. 5, pp. 253–283 | DOI | MR | Zbl
[6] New Global Well-Posedness Results for Nonlinear Schrödinger Equations, AMS Publications, Providence, RI, 1999 | MR
[7] An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., Volume 37 (1974), pp. 183–191 | DOI | MR | Zbl
[8] On the Hartree–Fock time-dependent problem, Commun. Math. Phys., Volume 49 (1976) no. 1, pp. 25–33 | DOI | MR
[9] The three-dimensional Wigner–Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci., Volume 14 (1991) no. 1, pp. 35–61 | DOI | MR | Zbl
[10] The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Commun. Math. Phys., Volume 46 (1976), pp. 99–104 | DOI | MR | Zbl
[11] Global well-posedness of the NLS system for infinitely many fermions (preprint available at) | arXiv | DOI | MR | Zbl
[12] Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl., Volume 83 (2004), pp. 1241–1273 | DOI | MR | Zbl
[13] Strichartz inequality for orthonormal functions, J. Eur. Math. Soc., Volume 16 (2014) no. 7, pp. 1507–1526 | DOI | MR | Zbl
[14] Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, 2014 (preprint available at) | arXiv | MR
[15] A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction, J. Stat. Phys., Volume 145 (2011), pp. 23–50 | DOI | MR | Zbl
[16] Space–time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221–1268 | DOI | MR | Zbl
[17] On the uniqueness of solutions to the Gross–Pitaevskii hierarchy, Commun. Math. Phys., Volume 279 (2008) no. 1, pp. 169–185 | DOI | MR | Zbl
[18] The Hartree equation for infinitely many particles I. Well-posedness theory, Commun. Math. Phys., Volume 334 (2015) no. 1, pp. 117–170 | DOI | MR | Zbl
[19] The Hartree equation for infinitely many particles, II. Dispersion and scattering in 2D, Anal. PDE, Volume 7 (2014) no. 6, pp. 1339–1363 | DOI | MR | Zbl
[20] Vlasov hydrodynamics of a quantum mechanical model, Commun. Math. Phys., Volume 79 (1981) no. 1, pp. 9–24 | DOI | MR
[21] A counterexample to an endpoint bilinear Strichartz inequality, Electron. J. Differ. Equ., Volume 151 (2006) (6 pp) | MR | Zbl
[22] The Cauchy problem for Hartree–Fock time-dependent equations, Ann. Inst. Henri Poincaré A, Phys. Théor., Volume 56 (1992), pp. 357–374 | Numdam | MR | Zbl
Cité par Sources :