This manuscript identifies a maximal system of equations which renders the classical Darboux problem elliptic, thereby providing a selection criterion for its well posedness. Let f be a symplectic form close enough to , the standard symplectic form on . We prove existence of a diffeomorphism φ, with optimal regularity, satisfying
@article{AIHPC_2018__35_2_327_0, author = {Dacorogna, B. and Gangbo, W. and Kneuss, O.}, title = {Symplectic factorization, {Darboux} theorem and ellipticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {327--356}, publisher = {Elsevier}, volume = {35}, number = {2}, year = {2018}, doi = {10.1016/j.anihpc.2017.04.005}, mrnumber = {3765545}, zbl = {1476.58037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.005/} }
TY - JOUR AU - Dacorogna, B. AU - Gangbo, W. AU - Kneuss, O. TI - Symplectic factorization, Darboux theorem and ellipticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 327 EP - 356 VL - 35 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.005/ DO - 10.1016/j.anihpc.2017.04.005 LA - en ID - AIHPC_2018__35_2_327_0 ER -
%0 Journal Article %A Dacorogna, B. %A Gangbo, W. %A Kneuss, O. %T Symplectic factorization, Darboux theorem and ellipticity %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 327-356 %V 35 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.005/ %R 10.1016/j.anihpc.2017.04.005 %G en %F AIHPC_2018__35_2_327_0
Dacorogna, B.; Gangbo, W.; Kneuss, O. Symplectic factorization, Darboux theorem and ellipticity. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 327-356. doi : 10.1016/j.anihpc.2017.04.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.005/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623–727 | DOI | MR | Zbl
[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35–92 | DOI | MR | Zbl
[3] On the pullback equation , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 1717–1741 | Numdam | MR | Zbl
[4] , Enseign. Math., Volume vol. 20 (1974), pp. 127–131 | MR | Zbl
[5] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375–417 | DOI | MR | Zbl
[6] Constructing optimal maps in Monge's transport problem as a limit of strictly convex costs, J. Am. Math. Soc., Volume 15 (2002), pp. 1–26 | MR | Zbl
[7] The Monge problem for strictly convex norms in , J. Eur. Math. Soc., Volume 12 (2010), pp. 1355–1369 | MR | Zbl
[8] The Pullback Equation for Differential Forms, Birkhaüser, 2012 | MR | Zbl
[9] The second order pullback equation, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 583–611 | DOI | MR | Zbl
[10] Direct Methods in the Calculus of Variations, Springer-Verlag, New York, 2007 | MR | Zbl
[11] Optimal transport of closed differential forms for convex costs, C. R. Math. Acad. Sci. Paris Ser I, Volume 353 (2015), pp. 1099–1104 | DOI | MR | Zbl
[12] B. Dacorogna, W. Gangbo, O. Kneuss, Optimal transport of closed differential forms for a non-convex cost.
[13] Sur le problème de Pfaff, Bull. Sci. Math., Volume 6 (1882), pp. 4–36 (49–68) | Numdam
[14] Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Am. Math. Soc., Volume 137 (1999) no. 653, pp. 1–66 | MR | Zbl
[15] An elementary proof of the polar decomposition of vector-valued functions, Arch. Ration. Mech. Anal., Volume 128 (1995), pp. 380–399 | MR | Zbl
[16] The geometry of optimal transportation, Acta Math., Volume 177 (1996), pp. 113–161 | DOI | MR | Zbl
[17] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977 | DOI | MR
[18] Partial Differential Equations, Springer-Verlag, New York, 1982 | MR
[19] A nonholonomic Moser theorem and optimal transport, J. Symplectic Geom., Volume 7 (2009), pp. 381–414 | DOI | MR | Zbl
[20] Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589–608 | DOI | MR | Zbl
[21] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286–294 | DOI | MR | Zbl
[22] F. Rezakhanlou, Optimal transport problem and contact structures, preprint, 2015.
Cité par Sources :