Korn inequalities for shells with zero Gaussian curvature
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 267-282.

We consider shells with zero Gaussian curvature, namely shells with one principal curvature zero and the other one having a constant sign. Our particular interests are shells that are diffeomorphic to a circular cylindrical shell with zero principal longitudinal curvature and positive circumferential curvature, including, for example, cylindrical and conical shells with arbitrary convex cross sections. We prove that the best constant in the first Korn inequality scales like thickness to the power 3/2 for a wide range of boundary conditions at the thin edges of the shell. Our methodology is to prove, for each of the three mutually orthogonal two-dimensional cross-sections of the shell, a “first-and-a-half Korn inequality”—a hybrid between the classical first and second Korn inequalities. These three two-dimensional inequalities assemble into a three-dimensional one, which, in turn, implies the asymptotically sharp first Korn inequality for the shell. This work is a part of mathematically rigorous analysis of extreme sensitivity of the buckling load of axially compressed cylindrical shells to shape imperfections.

DOI : 10.1016/j.anihpc.2017.04.004
Mots clés : Korn's inequality, Shells, Nonlinear elasticity, Cones, Cylinders
@article{AIHPC_2018__35_1_267_0,
     author = {Grabovsky, Yury and Harutyunyan, Davit},
     title = {Korn inequalities for shells with zero {Gaussian} curvature},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {267--282},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.04.004},
     mrnumber = {3739933},
     zbl = {1395.74056},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.004/}
}
TY  - JOUR
AU  - Grabovsky, Yury
AU  - Harutyunyan, Davit
TI  - Korn inequalities for shells with zero Gaussian curvature
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 267
EP  - 282
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.004/
DO  - 10.1016/j.anihpc.2017.04.004
LA  - en
ID  - AIHPC_2018__35_1_267_0
ER  - 
%0 Journal Article
%A Grabovsky, Yury
%A Harutyunyan, Davit
%T Korn inequalities for shells with zero Gaussian curvature
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 267-282
%V 35
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.004/
%R 10.1016/j.anihpc.2017.04.004
%G en
%F AIHPC_2018__35_1_267_0
Grabovsky, Yury; Harutyunyan, Davit. Korn inequalities for shells with zero Gaussian curvature. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 267-282. doi : 10.1016/j.anihpc.2017.04.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.004/

[1] Ciarlet, P.G. Mathematical Elasticity, vol. III, Studies in Mathematics and Its Applications, vol. 29, North-Holland Publishing Co., Amsterdam, 2000 (Theory of shells) | MR | Zbl

[2] Cioranescu, D.; Oleinik, O.; Tronel, G. On Korn's inequalities for frame type structures and junctions, C. R. Math. Acad. Sci., Volume 309 (1989) no. 9, pp. 591–596 | MR | Zbl

[3] Grabovsky, Y.; Harutyunyan, D. Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3277–3295 | DOI | MR | Zbl

[4] Grabovsky, Y.; Harutyunyan, D. Rigorous derivation of the buckling load in axially compressed circular cylindrical shells, J. Elast., Volume 120 (2015) no. 2, pp. 249–276 | DOI | MR | Zbl

[5] Grabovsky, Y.; Harutyunyan, D. Scaling instability of the buckling load in axially compressed cylindrical shells, J. Nonlinear Sci., Volume 26 (2016) no. 1, pp. 83–119 | DOI | MR | Zbl

[6] Grabovsky, Y.; Truskinovsky, L. The flip side of buckling, Contin. Mech. Thermodyn., Volume 19 (2007) no. 3–4, pp. 211–243 | MR | Zbl

[7] Harutyunyan, D. New asymptotically sharp Korn and Korn-like inequalities in thin domains, J. Elast., Volume 117 (October 2014) no. 1, pp. 95–109 | MR | Zbl

[8] Korn, A., Ann. Fac. Sci. Toulouse, Volume vol. 10, Université Paul Sabatier (1908), pp. 165–269 | JFM | Numdam | MR

[9] Korn, A. Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akad. Umiejet (Classs Sci. Math. Nat.) (1909), pp. 705–724 | JFM

[10] Lewicka, M.; Muller, S. On the optimal constants in Korn's and geometric rigidity estimates, in bounded and unbounded domains, under Neumann boundary conditions, Indiana Univ. Math. J., Volume 65 (2016) no. 2, pp. 377–397 | DOI | MR | Zbl

[11] Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, Dover, 1927 | JFM

[12] Nazarov, S.A. Weighted anisotropic Korn's inequality for a junction of a plate and a rod, Sb. Math., Volume 195 (2004) no. 4, pp. 553–583 | DOI | Zbl

[13] Nazarov, S.A. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods, Russ. Math. Surv., Volume 63 (2008) no. 1, pp. 35 | DOI | MR | Zbl

[14] Oleinik, O.A.; Shamaev, A.S.; Yosifian, G.A. Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and Its Applications, vol. 26, North-Holland, Amsterdam, 1992 | MR | Zbl

[15] Paroni, R.; Tomassetti, G. Asymptotically exact Korn's constant for thin cylindrical domains, C. R. Math., Volume 350 (2012) no. 15, pp. 749–752 | MR | Zbl

[16] Paroni, R.; Tomassetti, G. On Korn's constant for thin cylindrical domains, Math. Mech. Solids, Volume 19 (2014) no. 3, pp. 318–333 | DOI | MR | Zbl

[17] Tovstik, P.E.; Smirnov, A.L. Asymptotic Methods in the Buckling Theory of Elastic Shells, Series on Stability, Vibration and Control of Systems, vol. 4, World Scientific, 2001 | DOI | MR | Zbl

Cité par Sources :