In this article, we prove the existence of a non-scattering solution, which is minimal in some sense, to the mass-subcritical generalized Korteweg–de Vries (gKdV) equation in the scale critical space where . We construct this solution by a concentration compactness argument. Then, key ingredients are a linear profile decomposition result adopted to -framework and approximation of solutions to the gKdV equation which involves rapid linear oscillation by means of solutions to the nonlinear Schrödinger equation.
Mots clés : Generalized Korteweg–de Vries equation, Scattering problem, Threshold solution
@article{AIHPC_2018__35_2_283_0, author = {Masaki, Satoshi and Segata, Jun-ichi}, title = {Existence of a minimal non-scattering solution to the mass-subcritical generalized {Korteweg{\textendash}de} {Vries} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {283--326}, publisher = {Elsevier}, volume = {35}, number = {2}, year = {2018}, doi = {10.1016/j.anihpc.2017.04.003}, mrnumber = {3765544}, zbl = {1383.35196}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/} }
TY - JOUR AU - Masaki, Satoshi AU - Segata, Jun-ichi TI - Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 283 EP - 326 VL - 35 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/ DO - 10.1016/j.anihpc.2017.04.003 LA - en ID - AIHPC_2018__35_2_283_0 ER -
%0 Journal Article %A Masaki, Satoshi %A Segata, Jun-ichi %T Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 283-326 %V 35 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/ %R 10.1016/j.anihpc.2017.04.003 %G en %F AIHPC_2018__35_2_283_0
Masaki, Satoshi; Segata, Jun-ichi. Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 283-326. doi : 10.1016/j.anihpc.2017.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/
[1] Mass concentration phenomena for the -critical nonlinear Schrödinger equation, Trans. Am. Math. Soc., Volume 359 (2007), pp. 5257–5282 | DOI | MR | Zbl
[2] The stability of solitary waves, Proc. R. Soc. Lond. Ser. A, Volume 328 (1972), pp. 153–183 | MR
[3] Stability and instability of solitary waves of Korteweg–de Vries type, Proc. R. Soc. Lond. Ser. A, Volume 411 (1987), pp. 395–412 | MR | Zbl
[4] On the restriction and multiplier problems in , Geometric Aspects of Functional Analysis (1989–90), Lect. Notes Math., vol. 1469, Springer, Berlin, 1991, pp. 179–191 | DOI | MR | Zbl
[5] Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math. Ser., Volume vol. 42, Princeton Univ. Press (1995), pp. 83–112 (Princeton, NJ, 1991) | MR | Zbl
[6] Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., Volume 1998 (1998), pp. 253–283 | DOI | MR | Zbl
[7] Weakly nonlinear wavepackets in the Korteweg–de Vries equation: the KdV/NLS connection, Math. Comput. Simul., Volume 55 (2001), pp. 317–328 | MR | Zbl
[8] On the role of quadratic oscillations in nonlinear Schrödinger equations II. The -critical case, Trans. Am. Math. Soc., Volume 359 (2007), pp. 33–62 | MR | Zbl
[9] Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, American Mathematical Society, 2003 | DOI | MR | Zbl
[10] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003), pp. 1235–1293 | DOI | MR | Zbl
[11] Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 100 (1991), pp. 87–109 | DOI | MR | Zbl
[12] A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295–368 | DOI | MR | Zbl
[13] Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589–1618 | DOI | MR | Zbl
[14] Global well-posedness and scattering for the defocusing, -critical, nonlinear Schrödinger equation when , Am. J. Math., Volume 138 (2016), pp. 531–569 | DOI | MR | Zbl
[15] Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation, Anal. PDE, Volume 3 (2017) no. 5 | MR | Zbl
[16] An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., Volume 2004 (2004), pp. 3287–3308 | DOI | MR | Zbl
[17] Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., Volume 2005 (2005), pp. 2525–2558 | DOI | MR | Zbl
[18] Local well-posedness for the modified KdV equation in almost critical -spaces, Trans. Am. Math. Soc., Volume 361 (2009), pp. 5681–5694 | DOI | MR | Zbl
[19] Large time asymptotics of solutions to the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 159 (1998), pp. 110–136 | DOI | MR | Zbl
[20] Large time behavior of solutions for the modified Korteweg–de Vries equation, Int. Math. Res. Not., Volume 1999 (1999), pp. 395–418 | DOI | MR | Zbl
[21] On the modified Korteweg–de Vries equation, Math. Phys. Anal. Geom., Volume 4 (2001), pp. 197–227 | DOI | MR | Zbl
[22] Final state problem for Korteweg–de Vries type equations, J. Math. Phys., Volume 47 (2006) (16 pp.) | DOI | MR | Zbl
[23] On existence of global solutions of Schrödinger equations with subcritical nonlinearity for -initial data, Proc. Am. Math. Soc., Volume 140 (2012), pp. 3905–3920 | DOI | MR | Zbl
[24] On the Cauchy problem for the (generalized) KdV equation, Adv. Math. Suppl. Stud., Stud. Appl. Math., Volume 8 (1983), pp. 93–128 | MR | Zbl
[25] An -theory for nonlinear Schrödinger equations, Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 223–238 | DOI | MR | Zbl
[26] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006), pp. 645–675 | DOI | MR | Zbl
[27] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33–69 | DOI | MR | Zbl
[28] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527–620 | DOI | MR | Zbl
[29] Nonlinear Wave Equations, Contemp. Math., Volume vol. 263, Amer. Math. Soc., Providence, RI (2000), pp. 131–156 (Providence, RI, 1998) | DOI | MR | Zbl
[30] On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 191–221 | DOI | MR | Zbl
[31] The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 6, pp. 1203–1258 | MR | Zbl
[32] Nonlinear Schrödinger equations at critical regularity, Evolution Equations, Clay Math. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 2013, pp. 325–437 | MR | Zbl
[33] The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, Volume 1 (2008) no. 2, pp. 229–266 | DOI | MR | Zbl
[34] Small data scattering and soliton stability in for the quartic KdV equation, Anal. PDE, Volume 5 (2012), pp. 145–198 | DOI | MR | Zbl
[35] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., Volume 39 (1895), pp. 422–443 | DOI | JFM | MR
[36] Solitons on moving space curves, J. Math. Phys., Volume 18 (1977), pp. 1654–1661 | MR | Zbl
[37] Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal., Volume 11 (2001), pp. 74–123 | DOI | MR | Zbl
[38] Blow up in finite time and dynamics of blow up solutions for the critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002), pp. 617–664 | DOI | MR | Zbl
[39] Codimension one threshold manifold for the critical gKdV equation, Commun. Math. Phys., Volume 342 (2016), pp. 1075–1106 | DOI | MR | Zbl
[40] Blow up for the critical generalized Korteweg de Vries equation. I: Dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59–140 | DOI | MR | Zbl
[41] Blow up for the critical gKdV equation. II: Minimal mass dynamics, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1855–1925 | DOI | MR | Zbl
[42] Blow up for the critical gKdV equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 14 (2015), pp. 575–631 | MR | Zbl
[43] On minimal non-scattering solution for focusing mass-subcritical nonlinear Schrödinger equation, 2013 (preprint available at) | arXiv
[44] A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 1481–1531 | MR | Zbl
[45] Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, 2016 (preprint available at) | arXiv
[46] On well-posedness of generalized Korteweg–de Vries equation in scale critical space, Anal. PDE, Volume 9 (2016), pp. 699–725 | DOI | MR
[47] Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not., Volume 1998 (1998), pp. 399–425 | DOI | MR | Zbl
[48] Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl., Volume 83 (2004), pp. 277–311 | DOI | MR | Zbl
[49] Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., Volume 1996 (1996), pp. 793–815 | DOI | MR | Zbl
[50] Restriction theorems and maximal operators related to oscillatory integrals in , Duke Math. J., Volume 96 (1999) no. 3, pp. 547–574 | DOI | MR | Zbl
[51] Nonlinear small data scattering for the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 90 (1990), pp. 445–457 | DOI | MR | Zbl
[52] On the asymptotic behavior of solutions of generalized Korteweg–de Vries equations, J. Math. Anal. Appl., Volume 140 (1989), pp. 228–240 | DOI | MR | Zbl
[53] An abstract version of the concentration compactness principle, Rev. Mat. Complut., Volume 15 (2002), pp. 417–436 | DOI | MR | Zbl
[54] Approximation of the Korteweg–de Vries equation by the nonlinear Schrödinger equation, J. Differ. Equ., Volume 147 (1998), pp. 333–354 | DOI | MR | Zbl
[55] The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality, Anal. PDE, Volume 2 (2009), pp. 83–117 | DOI | MR | Zbl
[56] On the long time behavior of a generalized KdV equation, Acta Appl. Math., Volume 7 (1986), pp. 35–47 | DOI | MR | Zbl
[57] Nonlinear scattering theory at low energy, J. Funct. Anal., Volume 41 (1981), pp. 110–133 | DOI | MR | Zbl
[58] Scattering for the quartic generalised Korteweg–de Vries equation, J. Differ. Equ., Volume 232 (2007), pp. 623–651 | MR | Zbl
[59] Two remarks on the generalised Korteweg–de Vries equation, Discrete Contin. Dyn. Syst., Volume 18 (2007), pp. 1–14 | MR | Zbl
[60] A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), pp. 477–478 | DOI | MR | Zbl
[61] Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite norm, J. Math. Pures Appl. (9), Volume 80 (2001), pp. 1029–1044 | DOI | MR | Zbl
[62] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982/83), pp. 567–576 | MR | Zbl
[63] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51–67 | DOI | MR | Zbl
Cité par Sources :