In this article, we prove the existence of a non-scattering solution, which is minimal in some sense, to the mass-subcritical generalized Korteweg–de Vries (gKdV) equation in the scale critical
Mots-clés : Generalized Korteweg–de Vries equation, Scattering problem, Threshold solution
@article{AIHPC_2018__35_2_283_0, author = {Masaki, Satoshi and Segata, Jun-ichi}, title = {Existence of a minimal non-scattering solution to the mass-subcritical generalized {Korteweg{\textendash}de} {Vries} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {283--326}, publisher = {Elsevier}, volume = {35}, number = {2}, year = {2018}, doi = {10.1016/j.anihpc.2017.04.003}, mrnumber = {3765544}, zbl = {1383.35196}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/} }
TY - JOUR AU - Masaki, Satoshi AU - Segata, Jun-ichi TI - Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 283 EP - 326 VL - 35 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/ DO - 10.1016/j.anihpc.2017.04.003 LA - en ID - AIHPC_2018__35_2_283_0 ER -
%0 Journal Article %A Masaki, Satoshi %A Segata, Jun-ichi %T Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 283-326 %V 35 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/ %R 10.1016/j.anihpc.2017.04.003 %G en %F AIHPC_2018__35_2_283_0
Masaki, Satoshi; Segata, Jun-ichi. Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 283-326. doi : 10.1016/j.anihpc.2017.04.003. https://www.numdam.org/articles/10.1016/j.anihpc.2017.04.003/
[1] Mass concentration phenomena for the
[2] The stability of solitary waves, Proc. R. Soc. Lond. Ser. A, Volume 328 (1972), pp. 153–183 | MR
[3] Stability and instability of solitary waves of Korteweg–de Vries type, Proc. R. Soc. Lond. Ser. A, Volume 411 (1987), pp. 395–412 | MR | Zbl
[4] On the restriction and multiplier problems in
[5] Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math. Ser., Volume vol. 42, Princeton Univ. Press (1995), pp. 83–112 (Princeton, NJ, 1991) | MR | Zbl
[6] Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., Volume 1998 (1998), pp. 253–283 | DOI | MR | Zbl
[7] Weakly nonlinear wavepackets in the Korteweg–de Vries equation: the KdV/NLS connection, Math. Comput. Simul., Volume 55 (2001), pp. 317–328 | MR | Zbl
[8] On the role of quadratic oscillations in nonlinear Schrödinger equations II. The
[9] Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, American Mathematical Society, 2003 | DOI | MR | Zbl
[10] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003), pp. 1235–1293 | DOI | MR | Zbl
[11] Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 100 (1991), pp. 87–109 | DOI | MR | Zbl
[12] A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295–368 | DOI | MR | Zbl
[13] Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589–1618 | DOI | MR | Zbl
[14] Global well-posedness and scattering for the defocusing,
[15] Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation, Anal. PDE, Volume 3 (2017) no. 5 | MR | Zbl
[16] An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., Volume 2004 (2004), pp. 3287–3308 | DOI | MR | Zbl
[17] Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., Volume 2005 (2005), pp. 2525–2558 | DOI | MR | Zbl
[18] Local well-posedness for the modified KdV equation in almost critical
[19] Large time asymptotics of solutions to the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 159 (1998), pp. 110–136 | DOI | MR | Zbl
[20] Large time behavior of solutions for the modified Korteweg–de Vries equation, Int. Math. Res. Not., Volume 1999 (1999), pp. 395–418 | DOI | MR | Zbl
[21] On the modified Korteweg–de Vries equation, Math. Phys. Anal. Geom., Volume 4 (2001), pp. 197–227 | DOI | MR | Zbl
[22] Final state problem for Korteweg–de Vries type equations, J. Math. Phys., Volume 47 (2006) (16 pp.) | DOI | MR | Zbl
[23] On existence of global solutions of Schrödinger equations with subcritical nonlinearity for
[24] On the Cauchy problem for the (generalized) KdV equation, Adv. Math. Suppl. Stud., Stud. Appl. Math., Volume 8 (1983), pp. 93–128 | MR | Zbl
[25] An
[26] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006), pp. 645–675 | DOI | MR | Zbl
[27] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33–69 | DOI | MR | Zbl
[28] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527–620 | DOI | MR | Zbl
[29] Nonlinear Wave Equations, Contemp. Math., Volume vol. 263, Amer. Math. Soc., Providence, RI (2000), pp. 131–156 (Providence, RI, 1998) | DOI | MR | Zbl
[30] On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 191–221 | DOI | MR | Zbl
[31] The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 6, pp. 1203–1258 | MR | Zbl
[32] Nonlinear Schrödinger equations at critical regularity, Evolution Equations, Clay Math. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 2013, pp. 325–437 | MR | Zbl
[33] The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, Volume 1 (2008) no. 2, pp. 229–266 | DOI | MR | Zbl
[34] Small data scattering and soliton stability in
[35] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., Volume 39 (1895), pp. 422–443 | DOI | JFM | MR
[36] Solitons on moving space curves, J. Math. Phys., Volume 18 (1977), pp. 1654–1661 | MR | Zbl
[37] Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal., Volume 11 (2001), pp. 74–123 | DOI | MR | Zbl
[38] Blow up in finite time and dynamics of blow up solutions for the critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002), pp. 617–664 | DOI | MR | Zbl
[39] Codimension one threshold manifold for the critical gKdV equation, Commun. Math. Phys., Volume 342 (2016), pp. 1075–1106 | DOI | MR | Zbl
[40] Blow up for the critical generalized Korteweg de Vries equation. I: Dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59–140 | DOI | MR | Zbl
[41] Blow up for the critical gKdV equation. II: Minimal mass dynamics, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1855–1925 | DOI | MR | Zbl
[42] Blow up for the critical gKdV equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 14 (2015), pp. 575–631 | MR | Zbl
[43] On minimal non-scattering solution for focusing mass-subcritical nonlinear Schrödinger equation, 2013 (preprint available at) | arXiv
[44] A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 1481–1531 | MR | Zbl
[45] Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, 2016 (preprint available at) | arXiv
[46] On well-posedness of generalized Korteweg–de Vries equation in scale critical
[47] Compactness at blow-up time for
[48] Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl., Volume 83 (2004), pp. 277–311 | DOI | MR | Zbl
[49] Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not., Volume 1996 (1996), pp. 793–815 | DOI | MR | Zbl
[50] Restriction theorems and maximal operators related to oscillatory integrals in
[51] Nonlinear small data scattering for the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 90 (1990), pp. 445–457 | DOI | MR | Zbl
[52] On the asymptotic behavior of solutions of generalized Korteweg–de Vries equations, J. Math. Anal. Appl., Volume 140 (1989), pp. 228–240 | DOI | MR | Zbl
[53] An abstract version of the concentration compactness principle, Rev. Mat. Complut., Volume 15 (2002), pp. 417–436 | DOI | MR | Zbl
[54] Approximation of the Korteweg–de Vries equation by the nonlinear Schrödinger equation, J. Differ. Equ., Volume 147 (1998), pp. 333–354 | DOI | MR | Zbl
[55] The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality, Anal. PDE, Volume 2 (2009), pp. 83–117 | DOI | MR | Zbl
[56] On the long time behavior of a generalized KdV equation, Acta Appl. Math., Volume 7 (1986), pp. 35–47 | DOI | MR | Zbl
[57] Nonlinear scattering theory at low energy, J. Funct. Anal., Volume 41 (1981), pp. 110–133 | DOI | MR | Zbl
[58] Scattering for the quartic generalised Korteweg–de Vries equation, J. Differ. Equ., Volume 232 (2007), pp. 623–651 | MR | Zbl
[59] Two remarks on the generalised Korteweg–de Vries equation, Discrete Contin. Dyn. Syst., Volume 18 (2007), pp. 1–14 | MR | Zbl
[60] A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), pp. 477–478 | DOI | MR | Zbl
[61] Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite
[62] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982/83), pp. 567–576 | MR | Zbl
[63] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51–67 | DOI | MR | Zbl
- The convergence problem of the generalized Korteweg-de Vries equation in Fourier-Lebesgue space, Journal of Differential Equations, Volume 416 (2025), p. 614 | DOI:10.1016/j.jde.2024.10.007
- Weighted Bourgain–Morrey‐Besov–Triebel–Lizorkin spaces associated with operators, Mathematische Nachrichten, Volume 298 (2025) no. 3, p. 886 | DOI:10.1002/mana.202400223
- Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces, Advances in Mathematics, Volume 458 (2024), p. 109957 | DOI:10.1016/j.aim.2024.109957
- Grand Besov–Bourgain–Morrey spaces and their applications to boundedness of operators, Analysis and Mathematical Physics, Volume 14 (2024) no. 4 | DOI:10.1007/s13324-024-00932-z
- Brezis–Seeger–Van Schaftingen–Yung-type characterization of homogeneous ball Banach Sobolev spaces and its applications, Communications in Contemporary Mathematics, Volume 26 (2024) no. 08 | DOI:10.1142/s0219199723500414
- Gagliardo representation of norms of ball quasi-Banach function spaces, Journal of Functional Analysis, Volume 286 (2024) no. 2, p. 110205 | DOI:10.1016/j.jfa.2023.110205
- Bourgain–Brezis–Mironescu-Type Characterization of Inhomogeneous Ball Banach Sobolev Spaces on Extension Domains, The Journal of Geometric Analysis, Volume 34 (2024) no. 10 | DOI:10.1007/s12220-024-01737-z
- Long-range scattering for a critical homogeneous type nonlinear Schrödinger equation with time-decaying harmonic potentials, Journal of Differential Equations, Volume 365 (2023), p. 127 | DOI:10.1016/j.jde.2023.04.009
- Bourgain–Morrey spaces and their applications to boundedness of operators, Journal of Functional Analysis, Volume 284 (2023) no. 1, p. 109720 | DOI:10.1016/j.jfa.2022.109720
- Bourgain–Morrey spaces meet structure of Triebel–Lizorkin spaces, Mathematische Zeitschrift, Volume 304 (2023) no. 1 | DOI:10.1007/s00209-023-03282-x
- Well-posedness and dynamics of solutions to the generalized KdV with low power nonlinearity, Nonlinearity, Volume 36 (2023) no. 1, p. 584 | DOI:10.1088/1361-6544/ac93e1
- Bourgain–Morrey Spaces Mixed with Structure of Besov Spaces, Proceedings of the Steklov Institute of Mathematics, Volume 323 (2023) no. 1, p. 244 | DOI:10.1134/s0081543823050152
- Пространства типа Бургейна-Морри со структурой пространств Бесова, Труды Математического института имени В. А. Стеклова, Volume 323 (2023), p. 252 | DOI:10.4213/tm4355
- The structure of algebraic solitons and compactons in the generalized Korteweg–de Vries equation, Physica D: Nonlinear Phenomena, Volume 419 (2021), p. 132785 | DOI:10.1016/j.physd.2020.132785
- Modulation spaces with scaling symmetry, Applied and Computational Harmonic Analysis, Volume 48 (2020) no. 1, p. 496 | DOI:10.1016/j.acha.2019.04.005
- Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions, Journal de Mathématiques Pures et Appliquées, Volume 139 (2020), p. 177 | DOI:10.1016/j.matpur.2020.03.009
- Constructive Study of Modulational Instability in Higher Order Korteweg-de Vries Equations, Fluids, Volume 4 (2019) no. 1, p. 54 | DOI:10.3390/fluids4010054
- Long Range Scattering for Nonlinear Schrödinger Equations with Critical Homogeneous Nonlinearity, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 3, p. 3251 | DOI:10.1137/17m1144829
Cité par 18 documents. Sources : Crossref