Ancient shrinking spherical interfaces in the Allen–Cahn flow
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 187-215.

We consider the parabolic Allen–Cahn equation in Rn, n2,

ut=Δu+(1u2)u in Rn×(,0].
We construct an ancient radially symmetric solution u(x,t) with any given number k of transition layers between −1 and +1. At main order they consist of k time-traveling copies of w with spherical interfaces distant O(log|t|) one to each other as t. These interfaces are resemble at main order copies of the shrinking sphere ancient solution to mean the flow by mean curvature of surfaces: |x|=2(n1)t. More precisely, if w(s) denotes the heteroclinic 1-dimensional solution of w+(1w2)w=0 w(±)=±1 given by w(s)=tanh(s2) we have
u(x,t)j=1k(1)j1w(|x|ρj(t))12(1+(1)k) as t
where
ρj(t)=2(n1)t+12(jk+12)log(|t|log|t|)+O(1),j=1,,k.

DOI : 10.1016/j.anihpc.2017.03.005
Mots clés : Nonlinear parabolic equation, Allen–Cahn equation, Ancient solutions
@article{AIHPC_2018__35_1_187_0,
     author = {del Pino, Manuel and Gkikas, Konstantinos T.},
     title = {Ancient shrinking spherical interfaces in the {Allen{\textendash}Cahn} flow},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {187--215},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.005},
     mrnumber = {3739931},
     zbl = {1421.35195},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/}
}
TY  - JOUR
AU  - del Pino, Manuel
AU  - Gkikas, Konstantinos T.
TI  - Ancient shrinking spherical interfaces in the Allen–Cahn flow
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 187
EP  - 215
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/
DO  - 10.1016/j.anihpc.2017.03.005
LA  - en
ID  - AIHPC_2018__35_1_187_0
ER  - 
%0 Journal Article
%A del Pino, Manuel
%A Gkikas, Konstantinos T.
%T Ancient shrinking spherical interfaces in the Allen–Cahn flow
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 187-215
%V 35
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/
%R 10.1016/j.anihpc.2017.03.005
%G en
%F AIHPC_2018__35_1_187_0
del Pino, Manuel; Gkikas, Konstantinos T. Ancient shrinking spherical interfaces in the Allen–Cahn flow. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 187-215. doi : 10.1016/j.anihpc.2017.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/

[1] Allen, S.M.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., Volume 27 (1979), pp. 1084–1095 | DOI

[2] Bronsard, L.; Kohn, R.V. Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equ., Volume 90 (1991), pp. 211–237 | DOI | MR | Zbl

[3] Carr, J.; Pego, R.L. Invariant manifolds for metastable patterns in ut=ε2uxxf(u) , Proc. R. Soc. Edinb., Sect. A, Volume 116 (1990) no. 1–2, pp. 133–160 | MR | Zbl

[4] Chen, X. Generation and propagation of interfaces for reaction diffusion equations, J. Differ. Equ., Volume 96 (1992), pp. 116–141 | DOI | MR | Zbl

[5] Chen, X.; Guo, J.-S.; Hamel, F.; Ninomiya, H.; Roquejoffre, J. Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 3, pp. 369–393 | Numdam | MR | Zbl

[6] Daskalopoulos, P.; del Pino, M.; Sesum, N. Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. (2017) (in press) | DOI | MR | Zbl

[7] De Giorgi, E. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Pitagora, Bologna (1979), pp. 131–188 (Rome, 1978) | MR | Zbl

[8] de Mottoni, P.; Schatzman, M. Geometrical evolution of interfaces, C. R. Acad. Sci. Paris Ser. I Math., Volume 309 (1989) no. 7, pp. 453–458 | MR | Zbl

[9] M. del Pino, K. Gkikas, Ancient multiple-layer solutions to the Allen–Cahn equation, preprint. | MR

[10] del Pino, M.; Kowalczyk, M.; Wei, J. The Toda system and clustering interfaces in the Allen–Cahn equation, Arch. Ration. Mech. Anal., Volume 190 (2008) no. 1, pp. 141–187 | DOI | MR | Zbl

[11] del Pino, M.; Kowalczyk, M.; Wei, J. On De Giorgi's conjecture in dimension N=9 , Ann. Math. (2), Volume 174 (2011) no. 3, pp. 1485–1569 | DOI | MR | Zbl

[12] del Pino, M.; Kowalczyk, M.; Wei, J. Entire solutions of the Allen–Cahn equation and complete embedded minimal surfaces of finite total curvature in R3 , J. Differ. Geom., Volume 93 (2013) | DOI | MR | Zbl

[13] del Pino, M.; Kowalczyk, M.; Wei, J.; Yang, J. Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature, Geom. Funct. Anal., Volume 20 (2010) no. 4, pp. 918–957 | DOI | MR | Zbl

[14] del Pino, M.; Kowalczyk, M.; Wei, J. Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Commun. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 481–547 | DOI | MR | Zbl

[15] del Pino, M.; Kowalczyk, M.; Pacard, F.; Wei, J. Multiple-end solutions to the Allen–Cahn equation in R2 , J. Funct. Anal., Volume 258 (2010) no. 2, pp. 458–503 | DOI | MR | Zbl

[16] Fusco, G.; Hale, J.K. Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., Volume 1 (1989) no. 1, pp. 75–94 | DOI | MR | Zbl

[17] Ilmanen, T. Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differ. Geom., Volume 38 (1993) no. 2, pp. 417–461 | DOI | MR | Zbl

[18] Kohn, R.V.; Sternberg, P. Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Volume 111 (1989), pp. 69–84 | MR | Zbl

[19] Modica, L. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Pitagora, Bologna (1979), pp. 223–244 (Rome, 1978) | MR | Zbl

[20] Pacard, F.; Ritoré, M. From the constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differ. Geom., Volume 64 (2003) no. 3, pp. 359–423 | DOI | MR | Zbl

[21] Roger, M.; Tonegawa, Y. Convergence of phase-field approximations to the Gibbs–Thomson law, Calc. Var. Partial Differ. Equ., Volume 32 (2008), pp. 111–136 | DOI | MR | Zbl

[22] Rubinstein, J.; Sternberg, P.; Keller, J.B. Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., Volume 49 (1989) no. 1, pp. 116–133 | DOI | MR | Zbl

[23] Sáez, M. Relaxation of the curve shortening flow via the parabolic Ginzburg–Landau equation, Calc. Var. Partial Differ. Equ., Volume 31 (2008) no. 3, pp. 359–386 | MR | Zbl

[24] Savin, O. Regularity of flat level sets in phase transitions, Ann. Math., Volume 169 (2009), pp. 41–78 | DOI | MR | Zbl

Cité par Sources :