We consider the parabolic Allen–Cahn equation in , ,
@article{AIHPC_2018__35_1_187_0, author = {del Pino, Manuel and Gkikas, Konstantinos T.}, title = {Ancient shrinking spherical interfaces in the {Allen{\textendash}Cahn} flow}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {187--215}, publisher = {Elsevier}, volume = {35}, number = {1}, year = {2018}, doi = {10.1016/j.anihpc.2017.03.005}, mrnumber = {3739931}, zbl = {1421.35195}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/} }
TY - JOUR AU - del Pino, Manuel AU - Gkikas, Konstantinos T. TI - Ancient shrinking spherical interfaces in the Allen–Cahn flow JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 187 EP - 215 VL - 35 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/ DO - 10.1016/j.anihpc.2017.03.005 LA - en ID - AIHPC_2018__35_1_187_0 ER -
%0 Journal Article %A del Pino, Manuel %A Gkikas, Konstantinos T. %T Ancient shrinking spherical interfaces in the Allen–Cahn flow %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 187-215 %V 35 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/ %R 10.1016/j.anihpc.2017.03.005 %G en %F AIHPC_2018__35_1_187_0
del Pino, Manuel; Gkikas, Konstantinos T. Ancient shrinking spherical interfaces in the Allen–Cahn flow. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 187-215. doi : 10.1016/j.anihpc.2017.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.005/
[1] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., Volume 27 (1979), pp. 1084–1095 | DOI
[2] Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equ., Volume 90 (1991), pp. 211–237 | DOI | MR | Zbl
[3] Invariant manifolds for metastable patterns in , Proc. R. Soc. Edinb., Sect. A, Volume 116 (1990) no. 1–2, pp. 133–160 | MR | Zbl
[4] Generation and propagation of interfaces for reaction diffusion equations, J. Differ. Equ., Volume 96 (1992), pp. 116–141 | DOI | MR | Zbl
[5] Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 3, pp. 369–393 | Numdam | MR | Zbl
[6] Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. (2017) (in press) | DOI | MR | Zbl
[7] Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Pitagora, Bologna (1979), pp. 131–188 (Rome, 1978) | MR | Zbl
[8] Geometrical evolution of interfaces, C. R. Acad. Sci. Paris Ser. I Math., Volume 309 (1989) no. 7, pp. 453–458 | MR | Zbl
[9] M. del Pino, K. Gkikas, Ancient multiple-layer solutions to the Allen–Cahn equation, preprint. | MR
[10] The Toda system and clustering interfaces in the Allen–Cahn equation, Arch. Ration. Mech. Anal., Volume 190 (2008) no. 1, pp. 141–187 | DOI | MR | Zbl
[11] On De Giorgi's conjecture in dimension , Ann. Math. (2), Volume 174 (2011) no. 3, pp. 1485–1569 | DOI | MR | Zbl
[12] Entire solutions of the Allen–Cahn equation and complete embedded minimal surfaces of finite total curvature in , J. Differ. Geom., Volume 93 (2013) | DOI | MR | Zbl
[13] Interface foliation near minimal submanifolds in Riemannian manifolds with positive Ricci curvature, Geom. Funct. Anal., Volume 20 (2010) no. 4, pp. 918–957 | DOI | MR | Zbl
[14] Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Commun. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 481–547 | DOI | MR | Zbl
[15] Multiple-end solutions to the Allen–Cahn equation in , J. Funct. Anal., Volume 258 (2010) no. 2, pp. 458–503 | DOI | MR | Zbl
[16] Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., Volume 1 (1989) no. 1, pp. 75–94 | DOI | MR | Zbl
[17] Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differ. Geom., Volume 38 (1993) no. 2, pp. 417–461 | DOI | MR | Zbl
[18] Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Volume 111 (1989), pp. 69–84 | MR | Zbl
[19] Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Pitagora, Bologna (1979), pp. 223–244 (Rome, 1978) | MR | Zbl
[20] From the constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differ. Geom., Volume 64 (2003) no. 3, pp. 359–423 | DOI | MR | Zbl
[21] Convergence of phase-field approximations to the Gibbs–Thomson law, Calc. Var. Partial Differ. Equ., Volume 32 (2008), pp. 111–136 | DOI | MR | Zbl
[22] Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., Volume 49 (1989) no. 1, pp. 116–133 | DOI | MR | Zbl
[23] Relaxation of the curve shortening flow via the parabolic Ginzburg–Landau equation, Calc. Var. Partial Differ. Equ., Volume 31 (2008) no. 3, pp. 359–386 | MR | Zbl
[24] Regularity of flat level sets in phase transitions, Ann. Math., Volume 169 (2009), pp. 41–78 | DOI | MR | Zbl
Cité par Sources :