3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler–Poisson system
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 161-186.

We address the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler–Poisson system in a cylinder supplemented with non-small boundary data. A special Helmholtz decomposition of the velocity field is introduced for 3-D axisymmetric flow with a nonzero swirl (= angular momentum density) component. With the newly introduced decomposition, a quasilinear elliptic system of second order is derived from the elliptic modes in Euler–Poisson system for subsonic flows. Due to the nonzero swirl, the main difficulties lie in the solvability of a singular elliptic equation which concerns the angular component of the vorticity in its cylindrical representation, and in analysis of streamlines near the axis r=0.

DOI : 10.1016/j.anihpc.2017.03.004
Classification : 35J47, 35J57, 35J66, 35M10, 76N10
Mots clés : Steady Euler–Poisson system, Axisymmetric, Swirl, Subsonic, Helmholtz decomposition, Elliptic system, Singular elliptic equation, Transport equation
@article{AIHPC_2018__35_1_161_0,
     author = {Bae, Myoungjean and Weng, Shangkun},
     title = {3-D axisymmetric subsonic flows with nonzero swirl for the compressible {Euler{\textendash}Poisson} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {161--186},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.004},
     mrnumber = {3739930},
     zbl = {1384.35022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.004/}
}
TY  - JOUR
AU  - Bae, Myoungjean
AU  - Weng, Shangkun
TI  - 3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler–Poisson system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 161
EP  - 186
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.004/
DO  - 10.1016/j.anihpc.2017.03.004
LA  - en
ID  - AIHPC_2018__35_1_161_0
ER  - 
%0 Journal Article
%A Bae, Myoungjean
%A Weng, Shangkun
%T 3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler–Poisson system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 161-186
%V 35
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.004/
%R 10.1016/j.anihpc.2017.03.004
%G en
%F AIHPC_2018__35_1_161_0
Bae, Myoungjean; Weng, Shangkun. 3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler–Poisson system. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 161-186. doi : 10.1016/j.anihpc.2017.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.004/

[1] Amster, P.; Beccar Varela, M.; Jugel, A.; Mariani, M. Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., Volume 258 (2001) no. 1, pp. 52–62 | DOI | MR | Zbl

[2] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Compressible flows of jets and cavities, J. Differ. Equ., Volume 56 (1985) no. 1, pp. 82–141 | MR | Zbl

[3] Ascher, U.; Markowich, P.; Pietra, P.; Schmeiser, C. A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., Volume 1 (1991), pp. 347–376 | DOI | MR | Zbl

[4] Bae, M.; Duan, B.; Xie, C.J. Subsonic flow for multidimensional Euler–Poisson system, Arch. Ration. Mech. Anal., Volume 220 (2016), pp. 155–191 | MR

[5] Bae, M.; Duan, B.; Xie, C. Subsonic solutions for steady Euler–Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3455–3480 | MR | Zbl

[6] Bae, M.; Duan, B.; Xie, C. Two-dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 14, pp. 2721–2747 | MR | Zbl

[7] Bae, M.; Feldman, M. Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 777–840 | MR | Zbl

[8] Chen, G.; Feldman, M. Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections, Arch. Ration. Mech. Anal., Volume 184 (2007) no. 2, pp. 185–242 | DOI | MR | Zbl

[9] Chen, S.; Yuan, H. Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 3, pp. 523–556 | DOI | MR | Zbl

[10] Degond, P.; Markowich, P. On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., Volume 3 (1990), pp. 25–29 | DOI | MR | Zbl

[11] Degond, P.; Markowich, P. A steady-state potential flow model for semiconductors, Ann. Mat. Pura Appl., Volume 165 (1993), pp. 87–98 | DOI | MR | Zbl

[12] Du, L.L.; Duan, B. Global subsonic Euler flows in an infinitely long axisymmetric nozzle, J. Differ. Equ., Volume 250 (2011) no. 2, pp. 813–847 | MR | Zbl

[13] Du, L.; Weng, S.; Xin, Z. Subsonic irrotational flows in a finitely long nozzle with variable end pressure, Commun. Partial Differ. Equ., Volume 39 (2014) no. 4, pp. 666–695 | MR | Zbl

[14] Gamba, Irene M. Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., Volume 17 (1992) no. 3–4, pp. 553–577 | MR | Zbl

[15] Gamba, Irene M.; Morawetz, C. A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow, Commun. Pure Appl. Math., Volume 49 (1996) no. 10, pp. 999–1049 | MR | Zbl

[16] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2011

[17] Han, Q.; Lin, F. Elliptic Partial Differential Equations, Courant Institute of Math. Sci., NYU, 2011 | MR | Zbl

[18] Koch, G.; Nadirashvili, N.; Seregin, G.; Sverak, V. Liouville theorems for the Navier–Stokes equations and applications, Acta Math., Volume 203 (2009), pp. 83–105 | DOI | MR | Zbl

[19] Korobkov, M.; Pileckas, K.; Russo, R. An existence theorem for steady Navier–Stokes equations in the axially symmetric case, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume XIV (2015) no. 1, pp. 233–262 | MR | Zbl

[20] Li, J.; Xin, Z.; Yin, H. Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 2, pp. 533–581 | MR | Zbl

[21] Li, J.; Xin, Z.; Yin, H. Monotonicity and uniqueness of a 3D transonic shock solution in a conic nozzle with variable end pressure, Pac. J. Math., Volume 254 (2011) no. 1, pp. 129–171 | MR | Zbl

[22] Liu, J.; Wang, W. Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier–Stokes equation, SIAM J. Math. Anal., Volume 41 (2009) no. 5, pp. 1825–1850 | MR | Zbl

[23] Luo, T.; Xin, Z. Transonic shock solutions for a system of Euler–Poisson equations, Commun. Math. Sci., Volume 10 (2012) no. 2, pp. 419–462 | MR | Zbl

[24] Luo, T.; Rauch, J.; Xie, C.; Xin, Z. Stability of transonic shock solutions for one-dimensional Euler–Poisson equations, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 787–827 | MR | Zbl

[25] Markowich, P. The Stationary Semiconductor Device Equations, Springer-Verlag, New York, Berlin, 1986 | DOI | MR

[26] Markowich, P. On steady state Euler–Poisson models for semiconductors, Z. Angew. Math. Phys., Volume 42 (1991), pp. 389–407 | DOI | MR | Zbl

[27] Markowich, P.; Ringhofer, C.; Schmeiser, C. Semiconductor Equations, Springer-Verlag, New York, 1990 | DOI | MR | Zbl

[28] Weng, S. A new formulation for the 3-D Euler equations with an application to subsonic flows in a cylinder, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1609–1642 | DOI | MR | Zbl

[29] Weng, S. On steady subsonic flows for the Euler–Poisson models, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 757–779 | DOI | MR | Zbl

[30] Xie, C.; Xin, Z. Global subsonic and subsonic–sonic flows through infinitely long axially symmetric nozzles, J. Differ. Equ., Volume 248 (2010), pp. 2657–2683 | MR | Zbl

[31] Yeh, L.-M. Subsonic solutions of hydrodynamic model for semiconductors, Math. Methods Appl. Sci., Volume 20 (1997), pp. 1389–1410 | MR | Zbl

Cité par Sources :