On Lipschitz solutions for some forward–backward parabolic equations
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 65-100.

We investigate the existence and properties of Lipschitz solutions for some forward–backward parabolic equations in all dimensions. Our main approach to existence is motivated by reformulating such equations into partial differential inclusions and relies on a Baire's category method. In this way, the existence of infinitely many Lipschitz solutions to certain initial-boundary value problem of those equations is guaranteed under a pivotal density condition. Under this framework, we study two important cases of forward–backward anisotropic diffusion in which the density condition can be realized and therefore the existence results follow together with micro-oscillatory behavior of solutions. The first case is a generalization of the Perona–Malik model in image processing and the other that of Höllig's model related to the Clausius–Duhem inequality in the second law of thermodynamics.

DOI : 10.1016/j.anihpc.2017.03.001
Classification : 35M13, 35K20, 35D30, 49K20
Mots clés : Forward–backward parabolic equations, Partial differential inclusions, Convex integration, Baire's category method, Infinitely many Lipschitz solutions
@article{AIHPC_2018__35_1_65_0,
     author = {Kim, Seonghak and Yan, Baisheng},
     title = {On {Lipschitz} solutions for some forward{\textendash}backward parabolic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {65--100},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.001},
     mrnumber = {3739928},
     zbl = {1378.35153},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.001/}
}
TY  - JOUR
AU  - Kim, Seonghak
AU  - Yan, Baisheng
TI  - On Lipschitz solutions for some forward–backward parabolic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 65
EP  - 100
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.001/
DO  - 10.1016/j.anihpc.2017.03.001
LA  - en
ID  - AIHPC_2018__35_1_65_0
ER  - 
%0 Journal Article
%A Kim, Seonghak
%A Yan, Baisheng
%T On Lipschitz solutions for some forward–backward parabolic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 65-100
%V 35
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.001/
%R 10.1016/j.anihpc.2017.03.001
%G en
%F AIHPC_2018__35_1_65_0
Kim, Seonghak; Yan, Baisheng. On Lipschitz solutions for some forward–backward parabolic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 65-100. doi : 10.1016/j.anihpc.2017.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2017.03.001/

[1] Ball, J.M.; James, R.D. Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal., Volume 100 (1987) no. 1, pp. 13–52 | MR | Zbl

[2] Bellettini, G.; Fusco, G. The Γ-limit and the related gradient flow for singular perturbation functionals of Perona–Malik type, Trans. Am. Math. Soc., Volume 360 (2008) no. 9, pp. 4929–4987 | DOI | MR | Zbl

[3] Bellettini, G.; Fusco, G.; Guglielmi, N. A concept of solution and numerical experiments for forward–backward diffusion equations, Discrete Contin. Dyn. Syst., Volume 16 (2006) no. 4, pp. 783–842 | DOI | MR | Zbl

[4] Bourgain, J.; Brézis, H. On the equation divY=f and application to control of phases, J. Am. Math. Soc., Volume 16 (2002) no. 2, pp. 393–426 | DOI | MR | Zbl

[5] Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holl. Math. Stud., Notas de Matematica, 50, vol. 5, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1973 | MR | Zbl

[6] Bruckner, A.; Bruckner, J.; Thomson, B. Real Analysis, Prentice Hall, 1996

[7] Chen, Y.; Zhang, K. Young measure solutions of the two-dimensional Perona–Malik equation in image processing, Commun. Pure Appl. Anal., Volume 5 (2006) no. 3, pp. 615–635 | MR | Zbl

[8] Chipot, M.; Kinderlehrer, D. Equilibrium configurations of crystals, Arch. Ration. Mech. Anal., Volume 103 (1988) no. 3, pp. 237–277 | DOI | MR | Zbl

[9] Cordoba, D.; Faraco, D.; Gancedo, F. Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 3, pp. 725–746 | DOI | MR | Zbl

[10] Dacorogna, B.; Marcellini, P. Implicit Partial Differential Equations, Prog. Nonlinear Differ. Equ. Appl., vol. 37, Birkhäuser Boston, Inc., Boston, MA, 1999 | MR | Zbl

[11] Day, W. The Thermodynamics of Simple Materials with Fading Memory, Tracts Nat. Philos., vol. 22, Springer-Verlag, New York, Heidelberg and Berlin, 1970 | MR | Zbl

[12] De Lellis, C.; Székelyhidi, L. Jr. The Euler equations as a differential inclusion, Ann. Math., Volume 170 (2009) no. 3, pp. 1417–1436 | DOI | MR | Zbl

[13] Esedoglu, S. An analysis of the Perona–Malik scheme, Commun. Pure Appl. Math., Volume 54 (2001) no. 12, pp. 1442–1487 | MR | Zbl

[14] Esedoglu, S.; Greer, J.B. Upper bounds on the coarsening rate of discrete, ill-posed nonlinear diffusion equations, Commun. Pure Appl. Math., Volume 62 (2009) no. 1, pp. 57–81 | DOI | MR | Zbl

[15] Ghisi, M.; Gobbino, M. A class of local classical solutions for the one-dimensional Perona–Malik equation, Trans. Am. Math. Soc., Volume 361 (2009) no. 12, pp. 6429–6446 | DOI | MR | Zbl

[16] Ghisi, M.; Gobbino, M. An example of global classical solution for the Perona–Malik equation, Commun. Partial Differ. Equ., Volume 36 (2011) no. 8, pp. 1318–1352 | DOI | MR | Zbl

[17] Gromov, M. Convex integration of differential relations, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 37 (1973), pp. 329–343 | MR | Zbl

[18] Guidotti, P. A backward–forward regularization of the Perona–Malik equation, J. Differ. Equ., Volume 252 (2012) no. 4, pp. 3226–3244 | DOI | MR | Zbl

[19] Höllig, K. Existence of infinitely many solutions for a forward backward heat equation, Trans. Am. Math. Soc., Volume 278 (1983) no. 1, pp. 299–316 | DOI | MR | Zbl

[20] Höllig, K.; Nohel, J. Systems of Nonlinear Partial Differential Equations, NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., Volume vol. 111, Reidel, Dordrecht–Boston, Mass (1983), pp. 409–422 (Oxford, 1982) | MR | Zbl

[21] Kawohl, B.; Kutev, N. Maximum and comparison principle for one-dimensional anisotropic diffusion, Math. Ann., Volume 311 (1998) no. 1, pp. 107–123 | DOI | MR | Zbl

[22] Kichenassamy, S. The Perona–Malik paradox, SIAM J. Appl. Math., Volume 57 (1997) no. 5, pp. 1328–1342 | DOI | MR | Zbl

[23] Kim, S.; Yan, B. Radial weak solutions for the Perona–Malik equation as a differential inclusion, J. Differ. Equ., Volume 258 (2015) no. 6, pp. 1889–1932 | MR | Zbl

[24] Kim, S.; Yan, B. Convex integration and infinitely many weak solutions to the Perona–Malik equation in all dimensions, SIAM J. Math. Anal., Volume 47 (2015) no. 4, pp. 2770–2794 | MR | Zbl

[25] Kirchheim, B. Rigidity and Geometry of Microstructures, University of Leipzig, 2003 (Habilitation thesis)

[26] Ladyženskaja, O.A.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, R.I., 1968 | MR | Zbl

[27] Lieberman, G.M. Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI | MR | Zbl

[28] Müller, S.; Palombaro, M. On a differential inclusion related to the Born–Infeld equations, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2385–2403 | DOI | MR | Zbl

[29] Müller, S.; Šverák, V. Attainment results for the two-well problem by convex integration, Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 239–251 | MR | Zbl

[30] Müller, S.; Šverák, V. Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc., Volume 1 (1999) no. 4, pp. 393–422 | MR | Zbl

[31] Müller, S.; Šverák, V. Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math. (2), Volume 157 (2003) no. 3, pp. 715–742 | DOI | MR | Zbl

[32] Müller, S.; Sychev, M. Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal., Volume 181 (2001) no. 2, pp. 447–475 | DOI | MR | Zbl

[33] Perona, P.; Malik, J. Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., Volume 12 (1990), pp. 629–639 | DOI

[34] Shvydkoy, R. Convex integration for a class of active scalar equations, J. Am. Math. Soc., Volume 24 (2011) no. 4, pp. 1159–1174 | DOI | MR | Zbl

[35] Taheri, S.; Tang, Q.; Zhang, Z. Young measure solutions and instability of the one-dimensional Perona–Malik equation, J. Math. Anal. Appl., Volume 308 (2005) no. 2, pp. 467–490 | DOI | MR | Zbl

[36] Truesdell, C. Rational Thermodynamics, Springer-Verlag, New York, 1984 | MR | Zbl

[37] Yan, B. On the equilibrium set of magnetostatic energy by differential inclusion, Calc. Var. Partial Differ. Equ., Volume 47 (2013) no. 3–4, pp. 547–565 | MR | Zbl

[38] Yan, B. On stability and asymptotic behaviours for a degenerate Landau–Lifshitz equation, Proc. R. Soc. Edinb. A, Volume 145 (2015) no. 3, pp. 657–668 | MR | Zbl

[39] Zhang, K. Existence of infinitely many solutions for the one-dimensional Perona–Malik model, Calc. Var. Partial Differ. Equ., Volume 26 (2006) no. 2, pp. 171–199 | DOI | MR | Zbl

[40] Zhang, K. On existence of weak solutions for one-dimensional forward–backward diffusion equations, J. Differ. Equ., Volume 220 (2006) no. 2, pp. 322–353 | DOI | MR | Zbl

Cité par Sources :