This article proves the existence of solutions to a model of incompressible miscible displacement through a porous medium, with zero molecular diffusion and modelling wells by spatial measures. We obtain the solution by passing to the limit on problems indexed by vanishing molecular diffusion coefficients. The proof employs cutoff functions to excise the supports of the measures and the discontinuities in the permeability tensor, thus enabling compensated compactness arguments used by Y. Amirat and A. Ziani for the analysis of the problem with wells (Amirat and Ziani, 2004 [1]). We give a novel treatment of the diffusion–dispersion term, which requires delicate use of the Aubin–Simon lemma to ensure the strong convergence of the pressure gradient, owing to the troublesome lower-order terms introduced by the localisation procedure.
@article{AIHPC_2018__35_1_1_0, author = {Droniou, J\'er\^ome and Talbot, Kyle S.}, title = {Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--25}, publisher = {Elsevier}, volume = {35}, number = {1}, year = {2018}, doi = {10.1016/j.anihpc.2017.02.002}, mrnumber = {3739926}, zbl = {1390.35265}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.002/} }
TY - JOUR AU - Droniou, Jérôme AU - Talbot, Kyle S. TI - Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1 EP - 25 VL - 35 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.002/ DO - 10.1016/j.anihpc.2017.02.002 LA - en ID - AIHPC_2018__35_1_1_0 ER -
%0 Journal Article %A Droniou, Jérôme %A Talbot, Kyle S. %T Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1-25 %V 35 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.002/ %R 10.1016/j.anihpc.2017.02.002 %G en %F AIHPC_2018__35_1_1_0
Droniou, Jérôme; Talbot, Kyle S. Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 1-25. doi : 10.1016/j.anihpc.2017.02.002. http://www.numdam.org/articles/10.1016/j.anihpc.2017.02.002/
[1] Asymptotic behavior of the solutions of an elliptic–parabolic system arising in flow in porous media, Z. Anal. Anwend., Volume 23 (2004) no. 2, pp. 335–351 | MR | Zbl
[2] Movement of contaminants in groundwater: groundwater transport – advection and dispersion, Groundwater Contamination, Studies in Geophysics, National Academy Press, Washington DC, 1984, pp. 37–45
[3] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989) no. 1, pp. 149–169 | DOI | MR | Zbl
[4] Nonlinear elliptic equations with right-hand side measures, Commun. Partial Differ. Equ., Volume 17 (1992) no. 3–4, pp. 641–655 | MR | Zbl
[5] Mathematical analysis for reservoir models, SIAM J. Math. Anal., Volume 30 (1999) no. 2, pp. 431–453 (electronic) | DOI | MR | Zbl
[6] Finite difference methods for modeling porous media flows, Transp. Porous Media, Volume 17 (1994) no. 2, pp. 171–200
[7] Global and local estimates for nonlinear noncoercive elliptic equations with measure data, Commun. Partial Differ. Equ., Volume 28 (2003) no. 1–2, pp. 129–153 | MR | Zbl
[8] Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numer. Math., Volume 132 (2016) no. 4, pp. 721–766 | DOI | MR | Zbl
[9] On a miscible displacement model in porous media flow with measure data, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3158–3175 | DOI | MR | Zbl
[10] Problems arising in the modeling of processes for hydrocarbon recovery, The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1983, pp. 3–34 | Zbl
[11] Modelling wells in porous media flow, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 5, pp. 673–709 | DOI | MR | Zbl
[12] On existence and uniqueness results for a coupled system modeling miscible displacement in porous media, J. Math. Anal. Appl., Volume 194 (1995) no. 3, pp. 883–910 | DOI | MR | Zbl
[13] On the regularity of solutions to elliptic equations, Rend. Mat. Appl. (7), Volume 19 (2000) no. 4, pp. 471–488 (1999) | MR | Zbl
[14] Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985 | MR | Zbl
[15] Recent Developments in the Global Theory of Two-Dimensional Compressible Navier–Stokes Equations, Seminar on Mathematical Sciences, vol. 25, Keio University, Department of Mathematics, Yokohama, 1998 | MR | Zbl
[16] A method for predicting the performance of unstable miscible displacement in heterogeneous media, Soc. Pet. Eng. J., Volume 3 (1963) no. 2, pp. 145–154 | DOI
[17] Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Pet. Eng. J., Volume 6 (1966) no. 3, pp. 213–216 | DOI
[18] Fundamentals of Numerical Reservoir Simulation, Elsevier, New York, 1977
[19] Models for flow of non-Newtonian and complex fluids through porous media, J. Non-Newton. Fluid Mech., Volume 102 (2002) no. 2, pp. 447–473 | Zbl
[20] Finite element and finite difference methods for continuous flows in porous media, The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1983, pp. 34–106 | MR | Zbl
[21] An analysis of the grid orientation effect in numerical simulation of miscible displacement, Comput. Methods Appl. Mech. Eng., Volume 47 (1984) no. 1, pp. 47–71 | Zbl
[22] Compact sets in the space , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 | MR | Zbl
[23] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965) no. 1, pp. 189–258 | DOI | Numdam | MR | Zbl
[24] A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comput. Methods Appl. Mech. Eng., Volume 47 (1984) no. 1–2, pp. 3–46 | Zbl
Cité par Sources :