Damping of particles interacting with a vibrating medium
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1727-1758.

We investigate the large time behavior of the solutions of a Vlasov–Fokker–Planck equation where particles are subjected to a confining external potential and a self-consistent potential intended to describe the interaction of the particles with their environment. The environment is seen as a medium vibrating in a direction transverse to particles' motion. We identify equilibrium states of the model and justify the asymptotic trend to equilibrium. The analysis relies on hypocoercivity techniques.

DOI : 10.1016/j.anihpc.2016.12.005
Classification : 82C70, 70F45, 37K05, 74A25
Mots clés : Vlasov–Fokker–Planck equations, Interacting particles, Inelastic Lorentz gas, Relaxation to equilibrium, Hypocoercivity
@article{AIHPC_2017__34_7_1727_0,
     author = {Alonso, Ricardo and Goudon, Thierry and Vavasseur, Arthur},
     title = {Damping of particles interacting with a vibrating medium},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1727--1758},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.12.005},
     mrnumber = {3724755},
     zbl = {1386.82062},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/}
}
TY  - JOUR
AU  - Alonso, Ricardo
AU  - Goudon, Thierry
AU  - Vavasseur, Arthur
TI  - Damping of particles interacting with a vibrating medium
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1727
EP  - 1758
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/
DO  - 10.1016/j.anihpc.2016.12.005
LA  - en
ID  - AIHPC_2017__34_7_1727_0
ER  - 
%0 Journal Article
%A Alonso, Ricardo
%A Goudon, Thierry
%A Vavasseur, Arthur
%T Damping of particles interacting with a vibrating medium
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1727-1758
%V 34
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/
%R 10.1016/j.anihpc.2016.12.005
%G en
%F AIHPC_2017__34_7_1727_0
Alonso, Ricardo; Goudon, Thierry; Vavasseur, Arthur. Damping of particles interacting with a vibrating medium. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1727-1758. doi : 10.1016/j.anihpc.2016.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/

[1] Aguer, B.; De Bièvre, S.; Lafitte, P.; Parris, P.E. Classical motion in force fields with short range correlations, J. Stat. Phys., Volume 138 (2010) no. 4–5, pp. 780–814 | MR | Zbl

[2] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 43–100 | MR | Zbl

[3] Batt, J.; Morrison, P.J.; Rein, G. Linear stability of stationary solutions of the Vlasov–Poisson system in three dimension, Arch. Ration. Mech. Anal., Volume 130 (1995), pp. 163–182 | DOI | MR | Zbl

[4] Bouchut, F. Existence and uniqueness of a global smooth solution for the VPFP system in three dimensions, J. Funct. Anal., Volume 111 (1993), pp. 239–258 | DOI | MR | Zbl

[5] Bouchut, F. Smoothing effect for the non-linear VPFP system, J. Differ. Equ., Volume 122 (1995), pp. 225–238 | DOI | MR | Zbl

[6] Bruneau, L.; De Bièvre, S. A Hamiltonian model for linear friction in a homogeneous medium, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 511–542 | DOI | MR | Zbl

[7] Csiszar, I. Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hung., Volume 2 (1967), pp. 299–318 | MR | Zbl

[8] De Bièvre, S.; Goudon, T.; Vavasseur, A. Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov–Poisson system, SIAM J. Math. Anal., Volume 48 (2016) no. 6, pp. 3984–4020 | DOI | MR | Zbl

[9] De Bièvre, S.; Lafitte, P.; Parris, P.E. Normal transport at positive temperatures in classical Hamiltonian open systems, Adventures in Mathematical Physics, Contemp. Math., vol. 447, Amer. Math. Soc., Providence, RI, 2007, pp. 57–71 | DOI | MR | Zbl

[10] De Bièvre, S.; Parris, P.E. Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases, J. Stat. Phys., Volume 142 (2011) no. 2, pp. 356–385 | DOI | MR | Zbl

[11] De Bièvre, S.; Parris, P.E.; Silvius, A. Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator, Phys. D, Volume 208 (2005) no. 1–2, pp. 96–114 | MR | Zbl

[12] Di Perna, R.; Lions, P.-L.; Meyer, Y. Lp regularity of velocity average, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 8 (1991), pp. 271–287 | Numdam | MR | Zbl

[13] Dolbeault, J.; Mouhot, C.; Schmeiser, C. Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., Volume 367 (2015), pp. 3807–3828 | DOI | MR | Zbl

[14] El Ghani, N.; Masmoudi, N. Diffusion limit of the Vlasov–Poisson–Fokker–Planck system, Commun. Math. Sci., Volume 8 (2010), pp. 463–479 | DOI | MR | Zbl

[15] Evans, L.C. Partial Differential Equations, Grad. Stud. Math., vol. 19, Am. Math. Soc., 1998 | MR | Zbl

[16] Goudon, T. Intégration: Intégrale de Lebesgue et introduction à l'analyse fonctionnelle, Références Sciences. Ellipses, 2011 | Zbl

[17] Goudon, T.; Vavasseur, A. Mean field limit for particles interacting with a vibrating medium, Ann. Univ. Ferrara, Volume 62 (2016) no. 2, pp. 231–273 | DOI | MR | Zbl

[18] Helffer, B.; Nier, F. Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lect. Notes Math., vol. 1862, Springer, 2005 | MR | Zbl

[19] Hérau, F. Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., Volume 46 (2006) no. 3, 4, pp. 349–359 | MR | Zbl

[20] Hérau, F.; Thomann, L. On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential, J. Funct. Anal., Volume 271 (2016) no. 5, pp. 1301–1340 | DOI | MR | Zbl

[21] Kullback, S. A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Theory, Volume 4 (1967), pp. 126–127

[22] Lafitte, P.; Parris, P.E.; De Bièvre, S. Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath, J. Stat. Phys., Volume 132 (2008) no. 5, pp. 863–879 | DOI | MR | Zbl

[23] Lieb, E.H.; Loss, M. Analysis, Grad. Stud. Math., vol. 14, AMS, Providence, RI, 2001 | MR | Zbl

[24] Lions, P.-L. Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxf. Lect. Ser. Math. Appl., vol. 10, The Clarendon Press Oxford University Press, New York, 1998 (Oxford Science Publications) | MR | Zbl

[25] Masmoudi, N.; Tayeb, M.L. Diffusion limit of a semiconductor Boltzmann–Poisson system, SIAM J. Math. Anal., Volume 38 (2007), pp. 1788–1807 | DOI | MR | Zbl

[26] Persson, A. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., Volume 8 (1960), pp. 143–153 | DOI | MR | Zbl

[27] Perthame, B.; Souganidis, P. A limiting case for velocity averaging, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998), pp. 591–598 | Numdam | MR | Zbl

[28] Sogge, C.D. Lectures on Nonlinear Wave Equations, Monogr. Anal., Int. Press. of Boston, 2008 | MR | Zbl

[29] Sznitman, A.-S. Topics in propagation of chaos, Ecole d'Eté de Probabilités de Saint-Flour XIX, 1989, Lect. Notes Math., vol. 1464, Springer, 1991, pp. 165–251 | DOI | MR | Zbl

Cité par Sources :