We investigate the large time behavior of the solutions of a Vlasov–Fokker–Planck equation where particles are subjected to a confining external potential and a self-consistent potential intended to describe the interaction of the particles with their environment. The environment is seen as a medium vibrating in a direction transverse to particles' motion. We identify equilibrium states of the model and justify the asymptotic trend to equilibrium. The analysis relies on hypocoercivity techniques.
Mots clés : Vlasov–Fokker–Planck equations, Interacting particles, Inelastic Lorentz gas, Relaxation to equilibrium, Hypocoercivity
@article{AIHPC_2017__34_7_1727_0, author = {Alonso, Ricardo and Goudon, Thierry and Vavasseur, Arthur}, title = {Damping of particles interacting with a vibrating medium}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1727--1758}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.005}, mrnumber = {3724755}, zbl = {1386.82062}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/} }
TY - JOUR AU - Alonso, Ricardo AU - Goudon, Thierry AU - Vavasseur, Arthur TI - Damping of particles interacting with a vibrating medium JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1727 EP - 1758 VL - 34 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/ DO - 10.1016/j.anihpc.2016.12.005 LA - en ID - AIHPC_2017__34_7_1727_0 ER -
%0 Journal Article %A Alonso, Ricardo %A Goudon, Thierry %A Vavasseur, Arthur %T Damping of particles interacting with a vibrating medium %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1727-1758 %V 34 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/ %R 10.1016/j.anihpc.2016.12.005 %G en %F AIHPC_2017__34_7_1727_0
Alonso, Ricardo; Goudon, Thierry; Vavasseur, Arthur. Damping of particles interacting with a vibrating medium. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1727-1758. doi : 10.1016/j.anihpc.2016.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2016.12.005/
[1] Classical motion in force fields with short range correlations, J. Stat. Phys., Volume 138 (2010) no. 4–5, pp. 780–814 | MR | Zbl
[2] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 43–100 | MR | Zbl
[3] Linear stability of stationary solutions of the Vlasov–Poisson system in three dimension, Arch. Ration. Mech. Anal., Volume 130 (1995), pp. 163–182 | DOI | MR | Zbl
[4] Existence and uniqueness of a global smooth solution for the VPFP system in three dimensions, J. Funct. Anal., Volume 111 (1993), pp. 239–258 | DOI | MR | Zbl
[5] Smoothing effect for the non-linear VPFP system, J. Differ. Equ., Volume 122 (1995), pp. 225–238 | DOI | MR | Zbl
[6] A Hamiltonian model for linear friction in a homogeneous medium, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 511–542 | DOI | MR | Zbl
[7] Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hung., Volume 2 (1967), pp. 299–318 | MR | Zbl
[8] Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov–Poisson system, SIAM J. Math. Anal., Volume 48 (2016) no. 6, pp. 3984–4020 | DOI | MR | Zbl
[9] Normal transport at positive temperatures in classical Hamiltonian open systems, Adventures in Mathematical Physics, Contemp. Math., vol. 447, Amer. Math. Soc., Providence, RI, 2007, pp. 57–71 | DOI | MR | Zbl
[10] Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases, J. Stat. Phys., Volume 142 (2011) no. 2, pp. 356–385 | DOI | MR | Zbl
[11] Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator, Phys. D, Volume 208 (2005) no. 1–2, pp. 96–114 | MR | Zbl
[12] regularity of velocity average, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 8 (1991), pp. 271–287 | Numdam | MR | Zbl
[13] Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., Volume 367 (2015), pp. 3807–3828 | DOI | MR | Zbl
[14] Diffusion limit of the Vlasov–Poisson–Fokker–Planck system, Commun. Math. Sci., Volume 8 (2010), pp. 463–479 | DOI | MR | Zbl
[15] Partial Differential Equations, Grad. Stud. Math., vol. 19, Am. Math. Soc., 1998 | MR | Zbl
[16] Intégration: Intégrale de Lebesgue et introduction à l'analyse fonctionnelle, Références Sciences. Ellipses, 2011 | Zbl
[17] Mean field limit for particles interacting with a vibrating medium, Ann. Univ. Ferrara, Volume 62 (2016) no. 2, pp. 231–273 | DOI | MR | Zbl
[18] Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lect. Notes Math., vol. 1862, Springer, 2005 | MR | Zbl
[19] Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., Volume 46 (2006) no. 3, 4, pp. 349–359 | MR | Zbl
[20] On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential, J. Funct. Anal., Volume 271 (2016) no. 5, pp. 1301–1340 | DOI | MR | Zbl
[21] A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Theory, Volume 4 (1967), pp. 126–127
[22] Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath, J. Stat. Phys., Volume 132 (2008) no. 5, pp. 863–879 | DOI | MR | Zbl
[23] Analysis, Grad. Stud. Math., vol. 14, AMS, Providence, RI, 2001 | MR | Zbl
[24] Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxf. Lect. Ser. Math. Appl., vol. 10, The Clarendon Press Oxford University Press, New York, 1998 (Oxford Science Publications) | MR | Zbl
[25] Diffusion limit of a semiconductor Boltzmann–Poisson system, SIAM J. Math. Anal., Volume 38 (2007), pp. 1788–1807 | DOI | MR | Zbl
[26] Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., Volume 8 (1960), pp. 143–153 | DOI | MR | Zbl
[27] A limiting case for velocity averaging, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998), pp. 591–598 | Numdam | MR | Zbl
[28] Lectures on Nonlinear Wave Equations, Monogr. Anal., Int. Press. of Boston, 2008 | MR | Zbl
[29] Topics in propagation of chaos, Ecole d'Eté de Probabilités de Saint-Flour XIX, 1989, Lect. Notes Math., vol. 1464, Springer, 1991, pp. 165–251 | DOI | MR | Zbl
Cité par Sources :