We show the existence of global solution and the global attractor in
Mots-clés : Third order Lugiato–Lefever equation, Strichartz' estimate on one dimensional torus, Nonlinear smoothing effect, Global attractor
@article{AIHPC_2017__34_7_1707_0, author = {Miyaji, Tomoyuki and Tsutsumi, Yoshio}, title = {Existence of global solutions and global attractor for the third order {Lugiato{\textendash}Lefever} equation on {<strong>T</strong>}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1707--1725}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2016.12.004}, mrnumber = {3724754}, zbl = {1391.35357}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.004/} }
TY - JOUR AU - Miyaji, Tomoyuki AU - Tsutsumi, Yoshio TI - Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on T JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1707 EP - 1725 VL - 34 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.004/ DO - 10.1016/j.anihpc.2016.12.004 LA - en ID - AIHPC_2017__34_7_1707_0 ER -
%0 Journal Article %A Miyaji, Tomoyuki %A Tsutsumi, Yoshio %T Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on T %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1707-1725 %V 34 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.004/ %R 10.1016/j.anihpc.2016.12.004 %G en %F AIHPC_2017__34_7_1707_0
Miyaji, Tomoyuki; Tsutsumi, Yoshio. Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on T. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1707-1725. doi : 10.1016/j.anihpc.2016.12.004. https://www.numdam.org/articles/10.1016/j.anihpc.2016.12.004/
[1] Global attractors for semilinear wave equations, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 31–52 | MR | Zbl
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107–156 | MR | Zbl
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal., Volume 3 (1993), pp. 209–262 | MR | Zbl
[3] Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators, Phys. Rev. A, Volume 87 (2010)
[4] Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001), pp. 409–425 | DOI | MR | Zbl
[5] Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model, Opt. Lett., Volume 38 (2013), pp. 37–39 | DOI
[6] Smoothing and global attractors for the Zakharov system on the torus, Anal. PDE, Volume 6 (2013), pp. 1081–1090 | DOI | MR | Zbl
[7] Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., Volume 2013 (2013), pp. 4589–4614 | DOI | MR | Zbl
[8] Long time dynamics for forced and weakly damped KdV on the torus, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 2669–2684 | MR | Zbl
[9] Dispersive Partial Differential Equations, Well-posedness and Applications, LMS Student Texts, vol. 86, Cambridge University Press, 2016 | MR
[10] Weakly damped forced Korteweg–de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differ. Equ., Volume 74 (1988), pp. 369–390 | DOI | MR | Zbl
[11] A note on the strong convergence towards attractors of damped forced KdV equations, J. Differ. Equ., Volume 110 (1944), pp. 356–359 | MR | Zbl
[12] Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic NLS, Commun. Math. Phys., Volume 322 (2013), pp. 19–48 | MR | Zbl
[13] Asymptotic smoothing effect for weakly damped forced Korteweg–de Vries equations, Discrete Contin. Dyn. Syst., Volume 6 (2000), pp. 625–644 | DOI | MR | Zbl
[14] A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., Volume 9 (1996), pp. 573–603 | DOI | MR | Zbl
[15] Energy local energy bounds for the 1-d cubic NLS equation in
[16] Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities, Phys. Rev. Lett., Volume 100 (2013)
[17] Sliton families and resonant radiation in a micro-ring resonator near zero gourp-velocity dispersion, Opt. Express, Volume 22 (2014), pp. 3739
[18] On the regularity of the global attractor of a weakly damped, forced Korteweg–de Vries equation, Adv. Differ. Equ., Volume 2 (1997), pp. 257–296 | MR | Zbl
[19] On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett., Volume 16 (2009), pp. 111–120 | DOI | MR | Zbl
[20] Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in
[21] Local well-posedness in low regularity of the mKdV equation with periodic boundary condition, Discrete Contin. Dyn. Syst., Volume 28 (2010), pp. 1635–1654 | DOI | MR | Zbl
[22] Effect of the third-order dispersion on the nonlinear Schrödinger equation, J. Phys. Soc. Jpn., Volume 62 (1993), pp. 2324–2333 | DOI
[23] Global Strichartz estimates for nontrapping perturbations of the Laplacian, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 2171–2183 | DOI | MR | Zbl
[24] Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not. (2004) no. 56, pp. 3009–3040 | DOI | MR | Zbl
[25] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer, New York, 1997 | MR | Zbl
[26] Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index, Commun. Pure Appl. Anal., Volume 3 (2004), pp. 301–318 | MR | Zbl
Cité par Sources :