We consider a one-phase nonlocal free boundary problem obtained by the superposition of a fractional Dirichlet energy plus a nonlocal perimeter functional. We prove that the minimizers are Hölder continuous and the free boundary has positive density from both sides.
For this, we also introduce a new notion of fractional harmonic replacement in the extended variables and we study its basic properties.
Mots clés : Free boundary problems, Nonlocal minimal surfaces, Fractional operators, Regularity theory, Fractional harmonic replacement
@article{AIHPC_2017__34_6_1387_0, author = {Dipierro, Serena and Valdinoci, Enrico}, title = {Continuity and density results for a one-phase nonlocal free boundary problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1387--1428}, publisher = {Elsevier}, volume = {34}, number = {6}, year = {2017}, doi = {10.1016/j.anihpc.2016.11.001}, zbl = {1386.35490}, mrnumber = {3712006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.11.001/} }
TY - JOUR AU - Dipierro, Serena AU - Valdinoci, Enrico TI - Continuity and density results for a one-phase nonlocal free boundary problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1387 EP - 1428 VL - 34 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.11.001/ DO - 10.1016/j.anihpc.2016.11.001 LA - en ID - AIHPC_2017__34_6_1387_0 ER -
%0 Journal Article %A Dipierro, Serena %A Valdinoci, Enrico %T Continuity and density results for a one-phase nonlocal free boundary problem %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1387-1428 %V 34 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.11.001/ %R 10.1016/j.anihpc.2016.11.001 %G en %F AIHPC_2017__34_6_1387_0
Dipierro, Serena; Valdinoci, Enrico. Continuity and density results for a one-phase nonlocal free boundary problem. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 6, pp. 1387-1428. doi : 10.1016/j.anihpc.2016.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2016.11.001/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105–144 | MR | Zbl
[2] Variational problems with two phases and their free boundary, Trans. Am. Math. Soc., Volume 282 (1984) no. 2, pp. 431–461 | MR | Zbl
[3] An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math., Volume 54 (2001) no. 4, pp. 479–499 | DOI | MR | Zbl
[4] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 (xiv, 599 pp.) | MR | Zbl
[5] Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010) no. 9, pp. 1111–1144 | DOI | MR | Zbl
[6] Minimization of a fractional perimeter-Dirichlet integral functional, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 4, pp. 901–924 | DOI | Numdam | MR | Zbl
[7] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1245–1260 | MR | Zbl
[8] Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 1, pp. 59–88 | DOI | MR | Zbl
[9] The Steiner rearrangement in any codimension, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1–2, pp. 517–548 | MR | Zbl
[10] Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521–573 | DOI | MR | Zbl
[11] Strongly nonlocal dislocation dynamics in crystals, Commun. Partial Differ. Equ., Volume 39 (2014) no. 12, pp. 2351–2387 | DOI | MR | Zbl
[12] Fractional elliptic problems with critical growth in the whole of (preprint) | arXiv | MR
[13] All functions are locally s-harmonic up to a small error, J. Eur. Math. Soc. (JEMS) (2016) (in press) | MR
[14] A nonlocal free boundary problem, SIAM J. Math. Anal., Volume 47 (2015) no. 6, pp. 4559–4605 | DOI | MR | Zbl
[15] Definition of fractional Laplacian for functions with polynomial growth (preprint) | arXiv | DOI | MR | Zbl
[16] On a fractional harmonic replacement, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 8, pp. 3377–3392 | DOI | MR | Zbl
[17] Cavity problems in discontinuous media, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 1 | DOI | MR | Zbl
[18] The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., Volume 7 (1982), pp. 77–116 | DOI | MR | Zbl
[19] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993 (v, 363 pp.) | MR | Zbl
[20] A new formulation of Harnack's inequality for nonlocal operators, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 11–12, pp. 637–640 | MR | Zbl
[21] Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society (AMS), Providence, RI, 2001 (xxii, 346 pp.) | MR | Zbl
[22] An elliptic variational problem involving level surface area on Riemannian manifolds, Rev. Mat. Iberoam., Volume 28 (2012) no. 3, pp. 759–772 | DOI | MR | Zbl
[23] Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains, Sb. Math., Volume 205 (2014) no. 8, pp. 1133–1159 | DOI | MR | Zbl
Cité par Sources :