We study transitive step skew-product maps modeled over a complete shift of k,
We introduce a set of axioms for the fiber maps and study the dynamics of the resulting skew-product. These axioms turn out to capture the key mechanisms of the dynamics of nonhyperbolic robustly transitive maps with compact central leaves.
Focusing on the nonhyperbolic ergodic measures (with zero fiber exponent) of these systems, we prove that such measures are approximated in the
Mots-clés : Entropy, Ergodic measures, Lyapunov exponents, Skew-product, Transitivity
@article{AIHPC_2017__34_6_1561_0, author = {D{\'\i}az, L.J. and Gelfert, K. and Rams, M.}, title = {Nonhyperbolic step skew-products: {Ergodic} approximation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1561--1598}, publisher = {Elsevier}, volume = {34}, number = {6}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.009}, zbl = {1475.37044}, mrnumber = {3712011}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.009/} }
TY - JOUR AU - Díaz, L.J. AU - Gelfert, K. AU - Rams, M. TI - Nonhyperbolic step skew-products: Ergodic approximation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1561 EP - 1598 VL - 34 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.009/ DO - 10.1016/j.anihpc.2016.10.009 LA - en ID - AIHPC_2017__34_6_1561_0 ER -
%0 Journal Article %A Díaz, L.J. %A Gelfert, K. %A Rams, M. %T Nonhyperbolic step skew-products: Ergodic approximation %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1561-1598 %V 34 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.009/ %R 10.1016/j.anihpc.2016.10.009 %G en %F AIHPC_2017__34_6_1561_0
Díaz, L.J.; Gelfert, K.; Rams, M. Nonhyperbolic step skew-products: Ergodic approximation. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 6, pp. 1561-1598. doi : 10.1016/j.anihpc.2016.10.009. https://www.numdam.org/articles/10.1016/j.anihpc.2016.10.009/
[1] Nonuniform hyperbolicity for
[2] On the uniform hyperbolicity of certain hyperbolic systems, Proc. Am. Math. Soc., Volume 131 (2003), pp. 1303–1309 | MR | Zbl
[3] Robust vanishing of all Lyapunov exponents for iterated function systems, Math. Z., Volume 276 (2014), pp. 469–503 | DOI | MR | Zbl
[4] Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math. (2), Volume 143 (1996), pp. 357–396 | DOI | MR | Zbl
[5] Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences – Mathematical Physics, III, vol. 102, Springer, Berlin, 2005 | MR | Zbl
[6] Nonhyperbolic ergodic measures with large support, Nonlinearity, Volume 23 (2010), pp. 687–705 | DOI | MR | Zbl
[7] Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, Volume 1 (2002), pp. 513–541 | DOI | MR | Zbl
[8] Dominated Pesin theory: convex sums of hyperbolic measures (preprint) | arXiv | Zbl
[9] Topological entropy for noncompact sets, Trans. Am. Math. Soc., Volume 184 (1973), pp. 125–136 | DOI | MR | Zbl
[10] , Springer Lecture Notes in Mathematics, Volume vol. 1007, Springer-Verlag (1983), pp. 30–38 | DOI | MR | Zbl
[11] The almost Borel structure of diffeomorphisms with some hyperbolicity, Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., vol. 89, Amer. Math. Soc., Providence, RI, 2015, pp. 9–44 | DOI | MR | Zbl
[12] Partial hyperbolicity far from homoclinic bifurcations, Adv. Math., Volume 226 (2011), pp. 673–726 | DOI | MR | Zbl
[13] Abundant rich phase transitions in step-skew products, Nonlinearity, Volume 27 (2014), pp. 2255–2280 | MR | Zbl
[14] Nonhyperbolic ergodic measures for nonhyperbolic homoclinic classes, Ergod. Theory Dyn. Syst., Volume 29 (2009), pp. 1479–1513 | MR | Zbl
[15] Horseshoes for diffeomorphisms preserving hyperbolic measures, Math. Z., Volume 282 (2016), pp. 685–701 | MR | Zbl
[16] Non-removable zero Lyapunov exponent, Funct. Anal. Appl., Volume 39 (2005), pp. 27–38 | DOI | MR | Zbl
[17] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES, Volume 51 (1980), pp. 137–173 | DOI | Numdam | MR | Zbl
[18] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, 1995 | MR | Zbl
[19] Stability of the existence of nonhyperbolic measures for
[20] Physical measures for nonlinear random walks on interval, Mosc. Math. J., Volume 14 (2014), pp. 339–365 | MR | Zbl
[21] A relativised variational principle for continuous transformations, J. Lond. Math. Soc. (2), Volume 16 (1977), pp. 568–576 | MR | Zbl
[22] An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[23] Uniform hyperbolic approximations of measures with non-zero Lyapunov exponents, Proc. Am. Math. Soc., Volume 141 (2013), pp. 3157–3169 | DOI | MR | Zbl
[24] Entropy of piecewise monotone mappings, Stud. Math., Volume LXVII (1980), pp. 45–63 | MR | Zbl
[25] Stably ergodic dynamical systems and partial hyperbolicity, J. Complex., Volume 13 (1997), pp. 125–179 | DOI | MR | Zbl
[26] Absolutely singular dynamical foliations, Commun. Math. Phys., Volume 219 (2001), pp. 481–487 | DOI | MR | Zbl
[27] Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., vol. 51, Amer. Math. Soc., Providence, RI, 2007, pp. 103–109 | MR | Zbl
[28] Maximizing measures for partially hyperbolic systems with compact center leaves, Ergod. Theory Dyn. Syst., Volume 32 (2012), pp. 825–839 | DOI | MR | Zbl
[29] Pathological foliations and removable zero exponents, Invent. Math., Volume 139 (2000), pp. 495–508 | DOI | MR | Zbl
[30] Proceedings of the Sixth Conference on Probability Theory, Academiei Republicii Socialiste Rania (1981), pp. 221–228 (Bucaresti) | MR | Zbl
[31] An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York–Berlin, 1982 | DOI | MR | Zbl
- Synchronization rates and limit laws for random dynamical systems, Mathematische Zeitschrift, Volume 308 (2024) no. 1 | DOI:10.1007/s00209-024-03571-z
- Nonhyperbolic dynamics by mingling, blending, and flip-flopping, Topology and its Applications, Volume 339 (2023), p. 108571 | DOI:10.1016/j.topol.2023.108571
- Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles, Communications in Mathematical Physics, Volume 394 (2022) no. 1, p. 73 | DOI:10.1007/s00220-022-04406-w
- Mingled hyperbolicities: Ergodic properties and bifurcation phenomena (an approach using concavity), Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 11, p. 5309 | DOI:10.3934/dcds.2022100
- Topological entropy and Hausdorff dimension of irregular sets for non-hyperbolic dynamical systems, Dynamical Systems, Volume 37 (2022) no. 2, p. 181 | DOI:10.1080/14689367.2022.2031890
- Weak* and entropy approximation of nonhyperbolic measures: a geometrical approach, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 169 (2020) no. 3, p. 507 | DOI:10.1017/s0305004119000276
- Alsedà–Misiurewicz systems with place-dependent probabilities*, Nonlinearity, Volume 33 (2020) no. 11, p. 6221 | DOI:10.1088/1361-6544/aba094
- Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles, Communications in Mathematical Physics, Volume 367 (2019) no. 2, p. 351 | DOI:10.1007/s00220-019-03412-9
- The structure of the space of ergodic measures of transitive partially hyperbolic sets, Monatshefte für Mathematik, Volume 190 (2019) no. 3, p. 441 | DOI:10.1007/s00605-019-01325-2
- Invariance principle and rigidity of high entropy measures, Transactions of the American Mathematical Society, Volume 371 (2018) no. 2, p. 1231 | DOI:10.1090/tran/7278
Cité par 10 documents. Sources : Crossref