Geometry of minimizers for the interaction energy with mildly repulsive potentials
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1299-1308.

We show that the support of any local minimizer of the interaction energy consists of isolated points whenever the interaction potential is of class C2 and mildly repulsive at the origin; moreover, if the minimizer is global, then its support is finite. In addition, for some class of potentials we prove the validity of a uniform upper bound on the cardinal of the support of a global minimizer. Finally, in the one-dimensional case, we give quantitative bounds.

DOI : 10.1016/j.anihpc.2016.10.004
Mots clés : Interaction energy, Local minimizers, Mild repulsion
@article{AIHPC_2017__34_5_1299_0,
     author = {Carrillo, J.A. and Figalli, A. and Patacchini, F.S.},
     title = {Geometry of minimizers for the interaction energy with mildly repulsive potentials},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1299--1308},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.004},
     mrnumber = {3742525},
     zbl = {1408.49035},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/}
}
TY  - JOUR
AU  - Carrillo, J.A.
AU  - Figalli, A.
AU  - Patacchini, F.S.
TI  - Geometry of minimizers for the interaction energy with mildly repulsive potentials
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1299
EP  - 1308
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/
DO  - 10.1016/j.anihpc.2016.10.004
LA  - en
ID  - AIHPC_2017__34_5_1299_0
ER  - 
%0 Journal Article
%A Carrillo, J.A.
%A Figalli, A.
%A Patacchini, F.S.
%T Geometry of minimizers for the interaction energy with mildly repulsive potentials
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1299-1308
%V 34
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/
%R 10.1016/j.anihpc.2016.10.004
%G en
%F AIHPC_2017__34_5_1299_0
Carrillo, J.A.; Figalli, A.; Patacchini, F.S. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1299-1308. doi : 10.1016/j.anihpc.2016.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/

[1] Albi, G.; Balagué, D.; Carrillo, J.A.; von Brecht, J. Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., Volume 74 (2014) no. 3, pp. 794–818 | DOI | MR | Zbl

[2] Balagué, D.; Carrillo, J.A.; Laurent, T.; Raoul, G. Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 3, pp. 1055–1088 | DOI | MR | Zbl

[3] Bertozzi, A.L.; Kolokolnikov, T.; Sun, H.; Uminsky, D.; von Brecht, J. Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., Volume 13 (2015) no. 4, pp. 955–985 | DOI | MR | Zbl

[4] Blanchet, A.; Carlier, G. From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 372 (2014) no. 2028 (11) | MR | Zbl

[5] Cañizo, J.A.; Carrillo, J.A.; Patacchini, F.S. Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., Volume 217 (2015), pp. 1197–1217 | DOI | MR | Zbl

[6] Carrillo, J.A.; Castorina, D.; Volzone, B. Ground states for diffusion dominated free energies with logarithmic interaction, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 1–25 | DOI | MR | Zbl

[7] Carrillo, J.A.; Delgadino, M.G.; Mellet, A. Regularity of local minimizers of the interaction energy via obstacle problems, Commun. Math. Phys., Volume 343 (2016) no. 3, pp. 747–781 | DOI | MR | Zbl

[8] Carrillo, J.A.; Huang, Y. Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models (2017) (in press) | MR

[9] Carrillo, J.A.; Vázquez, J.L. Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 373 (2015) no. 2050 (16) | MR

[10] D'Orsogna, M.R.; Chuang, Y.-L.; Bertozzi, A.L.; Chayes, L.S. Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett., Volume 96 (2006) no. 10

[11] Holm, D.D.; Putkaradze, V. Formation of clumps and patches in self-aggregation of finite-size particles, Physica D, Volume 220 (2006) no. 2, pp. 183–196 | MR | Zbl

[12] Kolokolnikov, T.; Sun, H.; Uminsky, D.; Bertozzi, A.L. Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, Volume 84 (July 2011)

[13] Lattanzio, C.; Tzavaras, A.E. Relative entropy in diffusive relaxation, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1563–1584 | DOI | MR | Zbl

[14] Mogilner, A.; Edelstein-Keshet, L. A non-local model for a swarm, J. Math. Biol., Volume 38 (1999) no. 6, pp. 534–570 | DOI | MR | Zbl

[15] Simione, R.; Slepčev, D.; Topaloglu, I. Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., Volume 159 (2015) no. 4, pp. 972–986 | DOI | MR | Zbl

[16] Topaz, C.M.; Bertozzi, A.L.; Lewis, M.A. A nonlocal continuum model for biological aggregation, Bull. Math. Biol., Volume 68 (2006) no. 7, pp. 1601–1623 | DOI | MR

[17] Toscani, G. One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal., Volume 34 (2000) no. 6, pp. 1277–1291 | DOI | Numdam | MR | Zbl

[18] Villani, C. Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

Cité par Sources :