We show that the support of any local minimizer of the interaction energy consists of isolated points whenever the interaction potential is of class and mildly repulsive at the origin; moreover, if the minimizer is global, then its support is finite. In addition, for some class of potentials we prove the validity of a uniform upper bound on the cardinal of the support of a global minimizer. Finally, in the one-dimensional case, we give quantitative bounds.
@article{AIHPC_2017__34_5_1299_0, author = {Carrillo, J.A. and Figalli, A. and Patacchini, F.S.}, title = {Geometry of minimizers for the interaction energy with mildly repulsive potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1299--1308}, publisher = {Elsevier}, volume = {34}, number = {5}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.004}, mrnumber = {3742525}, zbl = {1408.49035}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/} }
TY - JOUR AU - Carrillo, J.A. AU - Figalli, A. AU - Patacchini, F.S. TI - Geometry of minimizers for the interaction energy with mildly repulsive potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1299 EP - 1308 VL - 34 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/ DO - 10.1016/j.anihpc.2016.10.004 LA - en ID - AIHPC_2017__34_5_1299_0 ER -
%0 Journal Article %A Carrillo, J.A. %A Figalli, A. %A Patacchini, F.S. %T Geometry of minimizers for the interaction energy with mildly repulsive potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1299-1308 %V 34 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/ %R 10.1016/j.anihpc.2016.10.004 %G en %F AIHPC_2017__34_5_1299_0
Carrillo, J.A.; Figalli, A.; Patacchini, F.S. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1299-1308. doi : 10.1016/j.anihpc.2016.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.004/
[1] Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., Volume 74 (2014) no. 3, pp. 794–818 | DOI | MR | Zbl
[2] Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 3, pp. 1055–1088 | DOI | MR | Zbl
[3] Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., Volume 13 (2015) no. 4, pp. 955–985 | DOI | MR | Zbl
[4] From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 372 (2014) no. 2028 (11) | MR | Zbl
[5] Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., Volume 217 (2015), pp. 1197–1217 | DOI | MR | Zbl
[6] Ground states for diffusion dominated free energies with logarithmic interaction, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 1–25 | DOI | MR | Zbl
[7] Regularity of local minimizers of the interaction energy via obstacle problems, Commun. Math. Phys., Volume 343 (2016) no. 3, pp. 747–781 | DOI | MR | Zbl
[8] Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models (2017) (in press) | MR
[9] Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 373 (2015) no. 2050 (16) | MR
[10] Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett., Volume 96 (2006) no. 10
[11] Formation of clumps and patches in self-aggregation of finite-size particles, Physica D, Volume 220 (2006) no. 2, pp. 183–196 | MR | Zbl
[12] Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, Volume 84 (July 2011)
[13] Relative entropy in diffusive relaxation, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1563–1584 | DOI | MR | Zbl
[14] A non-local model for a swarm, J. Math. Biol., Volume 38 (1999) no. 6, pp. 534–570 | DOI | MR | Zbl
[15] Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., Volume 159 (2015) no. 4, pp. 972–986 | DOI | MR | Zbl
[16] A nonlocal continuum model for biological aggregation, Bull. Math. Biol., Volume 68 (2006) no. 7, pp. 1601–1623 | DOI | MR
[17] One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal., Volume 34 (2000) no. 6, pp. 1277–1291 | DOI | Numdam | MR | Zbl
[18] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
Cité par Sources :