We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole–Hopf transformation, we prove unconditional global well-posedness in , and more generally in certain Fourier–Lebesgue spaces , under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invariant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup solution with non-small mean-zero initial data.
Mots clés : Quadratic derivative nonlinear Schrödinger equation, Normal form, Cole–Hopf transform, Fourier–Lebesgue space, Well-posedness, Finite time blowup
@article{AIHPC_2017__34_5_1273_0, author = {Chung, Jaywan and Guo, Zihua and Kwon, Soonsik and Oh, Tadahiro}, title = {Normal form approach to global well-posedness of the quadratic derivative nonlinear {Schr\"odinger} equation on the circle}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1273--1297}, publisher = {Elsevier}, volume = {34}, number = {5}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.003}, mrnumber = {3742524}, zbl = {1386.35376}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.003/} }
TY - JOUR AU - Chung, Jaywan AU - Guo, Zihua AU - Kwon, Soonsik AU - Oh, Tadahiro TI - Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1273 EP - 1297 VL - 34 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.003/ DO - 10.1016/j.anihpc.2016.10.003 LA - en ID - AIHPC_2017__34_5_1273_0 ER -
%0 Journal Article %A Chung, Jaywan %A Guo, Zihua %A Kwon, Soonsik %A Oh, Tadahiro %T Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1273-1297 %V 34 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.003/ %R 10.1016/j.anihpc.2016.10.003 %G en %F AIHPC_2017__34_5_1273_0
Chung, Jaywan; Guo, Zihua; Kwon, Soonsik; Oh, Tadahiro. Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1273-1297. doi : 10.1016/j.anihpc.2016.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.003/
[1] Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren Math. Wiss., vol. 250, Springer-Verlag, New York, 1988 (xiv+351 pp) | MR | Zbl
[2] On the regularization mechanism for the periodic Korteweg–de Vries equation, Commun. Pure Appl. Math., Volume 64 (2011) no. 5, pp. 591–648 | DOI | MR | Zbl
[3] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107–156 | DOI | MR | Zbl
[4] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990) no. 10, pp. 807–836 | DOI | MR | Zbl
[5] Gain of regularity for semilinear Schrödinger equations, Math. Ann., Volume 315 (1999) no. 4, pp. 529–567 | DOI | MR | Zbl
[6] M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, 2003.
[7] On a quasi-linear parabolic equation occurring in aerodynamics, Q. Appl. Math., Volume 9 (1951), pp. 225–236 | DOI | MR | Zbl
[8] Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., Volume 2013 (2013) no. 20, pp. 4589–4614 | DOI | MR | Zbl
[9] On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 309–323 | DOI | Numdam | MR | Zbl
[10] Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., Volume 322 (2013), pp. 19–48 | MR | Zbl
[11] Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello | arXiv | DOI | Zbl
[12] Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Volume 25 (1994) no. 6, pp. 1488–1503 | DOI | MR | Zbl
[13] On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., Volume 2006 (2006) (33 pp) | MR | Zbl
[14] Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in , Duke Math. J., Volume 159 (2011), pp. 329–349 | DOI | MR | Zbl
[15] The partial differential equation , Commun. Pure Appl. Math., Volume 3 (1950) no. 3, pp. 201–230 | DOI | MR | Zbl
[16] Small solutions to nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993), pp. 255–288 | DOI | Numdam | MR | Zbl
[17] Nonlinear wave interactions for the Benjamin–Ono equation, Int. Math. Res. Not. (2005) no. 30, pp. 1833–1847 | DOI | MR | Zbl
[18] On unconditional well-posedness of modified KdV, Int. Math. Res. Not., Volume 2012 (2012) no. 15, pp. 3509–3534 | DOI | MR | Zbl
[19] Global well-posedness in for the periodic Benjamin–Ono equation, Am. J. Math., Volume 130 (2008), pp. 635–685 | MR | Zbl
[20] The method of Poincaré normal forms in problems of integrability of equations of evolution type, Usp. Mat. Nauk, Volume 41 (1986) no. 5, pp. 109–152 (Russian) Engl. Trans. Russ. Math. Surv., 41, 5, 1986, 63–114 | MR | Zbl
[21] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation | arXiv | Zbl
[22] On quadratic derivative Schrödinger equations in one space dimension, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3589–3607 | DOI | MR | Zbl
[23] Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., Volume 4 (1999) no. 4, pp. 561–580 | MR | Zbl
[24] Global well-posedness of the Benjamin–Ono equation in , J. Hyperbolic Differ. Equ., Volume 1 (2004), pp. 27–49 | MR | Zbl
[25] Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Reg. Conf. Ser. Math., vol. 106, American Mathematical Society, Providence, RI, 2006 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, xvi+373 pp) | DOI | MR | Zbl
[26] -solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, Volume 30 (1987) no. 1, pp. 115–125 | MR | Zbl
[27] , GAKUTO Int. Ser. Math. Sci. Appl., Volume vol. 27, Gakkōtosho, Tokyo (2006), pp. 63–103 | MR | Zbl
[28] Periodic nonlinear Schrödinger equation in critical spaces, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1691–1703 | DOI | MR | Zbl
Cité par Sources :