We consider a class of nonlinear Klein–Gordon equations and obtain a family of small amplitude periodic solutions, where the temporal and spatial period have different scales. The proof is based on a combination of Lyapunov–Schmidt reduction, averaging and Nash–Moser iteration.
@article{AIHPC_2017__34_5_1255_0, author = {Lu, Nan}, title = {Small amplitude periodic solutions of {Klein{\textendash}Gordon} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1255--1272}, publisher = {Elsevier}, volume = {34}, number = {5}, year = {2017}, doi = {10.1016/j.anihpc.2016.10.002}, mrnumber = {3742523}, zbl = {1388.35006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.002/} }
TY - JOUR AU - Lu, Nan TI - Small amplitude periodic solutions of Klein–Gordon equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1255 EP - 1272 VL - 34 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.002/ DO - 10.1016/j.anihpc.2016.10.002 LA - en ID - AIHPC_2017__34_5_1255_0 ER -
%0 Journal Article %A Lu, Nan %T Small amplitude periodic solutions of Klein–Gordon equations %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1255-1272 %V 34 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.002/ %R 10.1016/j.anihpc.2016.10.002 %G en %F AIHPC_2017__34_5_1255_0
Lu, Nan. Small amplitude periodic solutions of Klein–Gordon equations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1255-1272. doi : 10.1016/j.anihpc.2016.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2016.10.002/
[1] Quasi-periodic solutions of the equation , Discrete Contin. Dyn. Syst., Volume 15 (2006) no. 3, pp. 883–903 | MR | Zbl
[2] Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Am. Math. Soc., Volume 8 (1983), pp. 409–426 | DOI | MR | Zbl
[3] Cantor families of periodic solutions of wave equations with nonlinearities, Nonlinear Differ. Equ. Appl., Volume 15 (2008) no. 1–2, pp. 247–276 | MR | Zbl
[4] Cantor families of periodic solutions for completely resonant wave equations, Front. Math. China, Volume 3 (2008) no. 2, pp. 151–165 | DOI | MR | Zbl
[5] Periodic solutions of nonlinear wave equations with general nonlinearities, Commun. Math. Phys., Volume 243 (2003) no. 2, pp. 315–328 | DOI | MR | Zbl
[6] Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 2, pp. 609–642 | DOI | MR | Zbl
[7] An abstract Nash–Moser theorem with parameters and applications to PDEs, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 1, pp. 377–399 | DOI | Numdam | MR | Zbl
[8] Periodic solutions of nonlinear wave equations and Hamiltonian systems, Am. J. Math., Volume 103 (1981), pp. 559–570 | DOI | MR | Zbl
[9] A property of exponential stability in nonlinear wave equations near the fundamental linear mode, Phys. D, Volume 122 (1998) no. 1–4, pp. 73–104 | MR | Zbl
[10] Forced vibrations for a nonlinear wave equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 1–30 | DOI | MR | Zbl
[11] Ordinary Differential Equations with Applications, Texts Appl. Math., vol. 34, Springer, New York, 2006 (xx+636 pp.) | MR | Zbl
[12] Newton's method and periodic solutions of nonlinear wave equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 11, pp. 1409–1498 | DOI | MR | Zbl
[13] Periodic solutions of certain abstract wave equations, Proc. Am. Math. Soc., Volume 123 (1995), pp. 465–470 | DOI | MR | Zbl
[14] Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions, Commun. Math. Phys., Volume 256 (2005) no. 2, pp. 437–490 | DOI | MR | Zbl
[15] Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differ. Equ., Volume 233 (2007) no. 2, pp. 512–542 | DOI | MR | Zbl
[16] Periodic solutions of a class of hyperbolic equations containing a small parameter, Arch. Ration. Mech. Anal., Volume 23 (1966), pp. 380–398 | MR | Zbl
[17] Bifurcation of periodic solutions for a semilinear wave equation, J. Math. Anal. Appl., Volume 68 (1979) no. 1, pp. 53–83 | MR | Zbl
[18] Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funct. Anal. Appl., Volume 21 (1987), pp. 192–205 | DOI | MR | Zbl
[19] Small generalized breathers with exponentially small tails for Klein–Gordon equations, J. Differ. Equ., Volume 256 (2014) no. 2, pp. 745–770 | MR | Zbl
[20] On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Am. Math. Soc., Volume 93 (1985), pp. 59–64 | DOI | MR | Zbl
[21] The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech., Volume 48 (1984) no. 2, pp. 133–139 translated from Prikl. Mat. Meh., 48, 2, 1984, 197–204 (in Russian) | DOI | MR | Zbl
[22] Normal form and exponential stability for some nonlinear string equations, Z. Angew. Math. Phys., Volume 52 (2001) no. 6, pp. 1033–1052 | DOI | MR | Zbl
[23] Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269–296 | MR | Zbl
[24] Periodic solutions of nonlinear hyperbolic partial differential equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 145–205 | DOI | MR | Zbl
[25] Periodic solutions of nonlinear hyperbolic partial differential equations II, Commun. Pure Appl. Math., Volume 22 (1968), pp. 15–39 | MR | Zbl
[26] Time periodic solutions of nonlinear wave equations, Manuscr. Math., Volume 5 (1971), pp. 165–194 | DOI | MR | Zbl
[27] Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., Volume 31 (1978) no. 2, pp. 157–184 | DOI | MR | Zbl
[28] Periodic solutions for Hamiltonian systems under strong constraining forces, J. Differ. Equ., Volume 186 (2002) no. 2, pp. 572–585 | DOI | MR | Zbl
[29] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990), pp. 479–528 | MR | Zbl
[30] Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differ. Equ., Volume 230 (2006) no. 1, pp. 213–274 | DOI | MR | Zbl
Cité par Sources :