BMO solvability and the A condition for second order parabolic operators
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1155-1180.

We prove that a sharp regularity property (A) of parabolic measure for operators in certain time-varying domains is equivalent to a Carleson measure property of bounded solutions. This equivalence was established in the elliptic case by Kenig, Kirchheim, Pipher and Toro, improving an earlier result of Kenig, Dindos and Pipher for solutions with data in BMO. The connection between regularity of the elliptic measure and certain Carleson measure properties of solutions was established in order to study solvability of boundary value problems for non-symmetric divergence form operators (Kenig, Koch, Pipher, and Toro). The extension to the parabolic setting requires an approach to the key estimates of the aforementioned works that primarily exploits the maximum principle. For various classes of parabolic operators ([24]), this criterion also provides an easier route to establish the solvability of the Dirichlet problem with data in Lp for some p, and also to quantify these results in several aspects.

DOI : 10.1016/j.anihpc.2016.09.004
Classification : 35K10, 35K20
Mots clés : Parabolic boundary value problem, $ {A}_{\infty }$ condition, BMO Dirichlet problem
@article{AIHPC_2017__34_5_1155_0,
     author = {Dindo\v{s}, Martin and Petermichl, Stefanie and Pipher, Jill},
     title = {BMO solvability and the {\protect\emph{A}}         \protect\textsubscript{\ensuremath{\infty}} condition for second order parabolic operators},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1155--1180},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.09.004},
     mrnumber = {3742519},
     zbl = {1383.35097},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.09.004/}
}
TY  - JOUR
AU  - Dindoš, Martin
AU  - Petermichl, Stefanie
AU  - Pipher, Jill
TI  - BMO solvability and the A         ∞ condition for second order parabolic operators
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1155
EP  - 1180
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.09.004/
DO  - 10.1016/j.anihpc.2016.09.004
LA  - en
ID  - AIHPC_2017__34_5_1155_0
ER  - 
%0 Journal Article
%A Dindoš, Martin
%A Petermichl, Stefanie
%A Pipher, Jill
%T BMO solvability and the A         ∞ condition for second order parabolic operators
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1155-1180
%V 34
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.09.004/
%R 10.1016/j.anihpc.2016.09.004
%G en
%F AIHPC_2017__34_5_1155_0
Dindoš, Martin; Petermichl, Stefanie; Pipher, Jill. BMO solvability and the A          condition for second order parabolic operators. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1155-1180. doi : 10.1016/j.anihpc.2016.09.004. http://www.numdam.org/articles/10.1016/j.anihpc.2016.09.004/

[1] Aronson, D. Nonnegative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, Volume 22 (1968), pp. 607–694 | Numdam | MR | Zbl

[2] Brown, R. The method of layer potentials for the heat equation in Lipschitz cylinders, Am. J. Math., Volume 111 (1989) no. 2, pp. 339–379 | DOI | MR | Zbl

[3] Brown, R. The initial-Neumann problem for the heat equation in Lipschitz cylinders, Trans. Am. Math. Soc., Volume 320 (1990) no. 1, pp. 1–52 | DOI | MR | Zbl

[4] Christ, M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., Volume 60/61 (1990) no. 2, pp. 60–628 | DOI | MR | Zbl

[5] Coifman, R.R.; Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals, Stud. Math., Volume 51 (1974), pp. 241–250 | DOI | MR | Zbl

[6] Dahlberg, Björn E.J. Estimates of harmonic measure, Arch. Ration. Mech. Anal., Volume 65 (1977) no. 3, pp. 275–288 | MR | Zbl

[7] Dahlberg, B.; Jerison, D.; Kenig, C. Area integral estimates for elliptic differential operators with non-smooth coefficients, Ark. Mat., Volume 22 (1984) no. 1, pp. 97–108 | MR | Zbl

[8] Dindoš, M.; Hwang, S. The Dirichlet boundary problem for second order parabolic operators satisfying Carleson condition | arXiv | DOI | Zbl

[9] Dindoš, M.; Kenig, C.; Pipher, J. BMO solvability and the A condition for elliptic operators, J. Geom. Anal., Volume 21 (2011) no. 1, pp. 78–95 | DOI | MR | Zbl

[10] Dindoš, M.; Petermichl, S.; Pipher, J. The Lp Dirichlet problem for second order elliptic operators and a p-adapted square function, J. Funct. Anal., Volume 249 (2007) no. 2, pp. 372–392 | DOI | MR | Zbl

[11] Fabes, E.; Neri, U. Dirichlet problem in Lipschitz domains with BMO data, Proc. Am. Math. Soc., Volume 78 (1980) no. 1, pp. 33–39 | DOI | MR | Zbl

[12] Fabes, E.; Salsa, S. Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders, Trans. Am. Math. Soc., Volume 279 (1983) no. 2, pp. 635–650 | DOI | MR | Zbl

[13] Fefferman, R.; Kenig, C.; Pipher, J. The theory of weights and the Dirichlet problem for elliptic equations, Ann. Math. (2), Volume 134 (1991) no. 1, pp. 65–124 | DOI | MR | Zbl

[14] Hofmann, S.; Lewis, J. L2 solvability and representation by caloric layer potentials in time-varying domains, Ann. Math. (2), Volume 144 (1996) no. 2, pp. 349–420 | DOI | MR | Zbl

[15] Hofmann, S.; Lewis, J. The Dirichlet problem for parabolic operators with singular drift terms, Mem. Am. Math. Soc., Volume 151 (2001), pp. 719 (viii+113) | MR | Zbl

[16] Kenig, C.; Kirchheim, B.; Pipher, J.; Toro, T. Square functions and the A property of elliptic measures, J. Geom. Anal. (2015), pp. 1–28 | MR | Zbl

[17] Kenig, C.; Koch, H.; Pipher, J.; Toro, T. A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math., Volume 153 (2000) no. 2, pp. 231–298 | DOI | MR | Zbl

[18] Kenig, C.; Pipher, J. The Dirichlet problem for elliptic equations with drift terms, Publ. Math., Volume 45 (2001) no. 1, pp. 199–217 | MR | Zbl

[19] Kaufman, R.; Wu, J.-M. Parabolic measure on domains of class Lip12 , Compos. Math., Volume 65 (1988) no. 2, pp. 201–207 | Numdam | MR | Zbl

[20] Lewis, J.; Murray, M. The method of layer potentials for the heat equation in time-varying domains, Mem. Am. Math. Soc., Volume 114 (1995) no. 545 (viii+157) | MR | Zbl

[21] Lewis, J.; Silver, J. Parabolic measure and the Dirichlet problem for the heat equation in two dimensions, Indiana Univ. Math. J., Volume 37 (1988) no. 4, pp. 801–839 | DOI | MR | Zbl

[22] Nyström, K. The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J., Volume 46 (1997) no. 1, pp. 183–245 | DOI | MR | Zbl

[23] Rivera-Noriega, J. Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains, Indiana Univ. Math. J., Volume 52 (2002) no. 2, pp. 477–525 | DOI | MR | Zbl

[24] Rivera-Noriega, J. Perturbation and solvability of initial Lp Dirichlet problems for parabolic equations over non-cylindrical domains, Can. J. Math., Volume 66 (2014) no. 2, pp. 429–452 | DOI | MR | Zbl

[25] Sweezy, C. Bq for parabolic measures, Stud. Math., Volume 131 (1998) no. 2, pp. 115–135 | DOI | MR | Zbl

Cité par Sources :