We consider the 2D Muskat equation for the interface between two constant density fluids in an incompressible porous medium, with velocity given by Darcy's law. We establish that as long as the slope of the interface between the two fluids remains bounded and uniformly continuous, the solution remains regular. The proofs exploit the nonlocal nonlinear parabolic nature of the equations through a series of nonlinear lower bounds for nonlocal operators. These are used to deduce that as long as the slope of the interface remains uniformly bounded, the curvature remains bounded. The nonlinear bounds then allow us to obtain local existence for arbitrarily large initial data in the class
Mots-clés : Porous medium, Darcy's law, Muskat problem, Maximum principle
@article{AIHPC_2017__34_4_1041_0, author = {Constantin, Peter and Gancedo, Francisco and Shvydkoy, Roman and Vicol, Vlad}, title = {Global regularity for {2D} {Muskat} equations with finite slope}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1041--1074}, publisher = {Elsevier}, volume = {34}, number = {4}, year = {2017}, doi = {10.1016/j.anihpc.2016.09.001}, zbl = {1365.76304}, mrnumber = {3661870}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2016.09.001/} }
TY - JOUR AU - Constantin, Peter AU - Gancedo, Francisco AU - Shvydkoy, Roman AU - Vicol, Vlad TI - Global regularity for 2D Muskat equations with finite slope JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1041 EP - 1074 VL - 34 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2016.09.001/ DO - 10.1016/j.anihpc.2016.09.001 LA - en ID - AIHPC_2017__34_4_1041_0 ER -
%0 Journal Article %A Constantin, Peter %A Gancedo, Francisco %A Shvydkoy, Roman %A Vicol, Vlad %T Global regularity for 2D Muskat equations with finite slope %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1041-1074 %V 34 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2016.09.001/ %R 10.1016/j.anihpc.2016.09.001 %G en %F AIHPC_2017__34_4_1041_0
Constantin, Peter; Gancedo, Francisco; Shvydkoy, Roman; Vicol, Vlad. Global regularity for 2D Muskat equations with finite slope. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 1041-1074. doi : 10.1016/j.anihpc.2016.09.001. https://www.numdam.org/articles/10.1016/j.anihpc.2016.09.001/
[1] Well-posedness of two-phase Hele-Shaw flow without surface tension, Eur. J. Appl. Math., Volume 15 (2004) no. 5, pp. 597–607 | DOI | MR | Zbl
[2] Well-posedness of two-phase Darcy flow in 3D, Q. Appl. Math., Volume 65 (2007) no. 1, pp. 189–203 | DOI | MR | Zbl
[3] The zero surface tension limit of two-dimensional interfacial Darcy flow, J. Math. Fluid Mech., Volume 16 (2014) no. 1, pp. 105–143 | DOI | MR | Zbl
[4] Local solvability and turning for the inhomogeneous Muskat problem, Interfaces Free Bound., Volume 16 (2014) no. 2, pp. 175–213 | DOI | MR | Zbl
[5] Dynamics of Fluids in Porous Media, Courier Dover Publications, 1972 | Zbl
[6] Duchon–Robert solutions for the Rayleigh–Taylor and Muskat problems, J. Differ. Equ., Volume 256 (2014) no. 1, pp. 206–222 | DOI | MR | Zbl
[7] Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves, Ann. Math. (2), Volume 175 (2012) no. 2, pp. 909–948 | DOI | MR | Zbl
[8] Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 3, pp. 805–909 | DOI | MR | Zbl
[9] Splash singularities for the one-phase Muskat problem in stable regimes, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 1, pp. 213–243 | DOI | MR | Zbl
[10] On the Muskat problem: global in time results in 2D and 3D, Am. J. Math. (2014) https://www.press.jhu.edu/journals/american_journal_of_mathematics/future_publications.html (in press, see) | arXiv | MR
[11] On the global existence for the Muskat problem, J. Eur. Math. Soc., Volume 15 (2013), pp. 201–227 | DOI | MR | Zbl
[12] Global solutions for small data to the Hele-Shaw problem, Nonlinearity, Volume 6 (1993) no. 3, pp. 393–415 | DOI | MR | Zbl
[13] Long time dynamics of forced critical SQG, Commun. Math. Phys., Volume 335 (2015) no. 1, pp. 93–141 | DOI | MR | Zbl
[14] Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., Volume 22 (2012) no. 5, pp. 1289–1321 | DOI | MR | Zbl
[15] Porous media: the Muskat problem in three dimensions, Anal. PDE, Volume 6 (2013) no. 2, pp. 447–497 | DOI | MR | Zbl
[16] Contour dynamics of incompressible 3-D fluids in a porous medium with different densities, Commun. Math. Phys., Volume 273 (2007) no. 2, pp. 445–471 | DOI | MR | Zbl
[17] A maximum principle for the Muskat problem for fluids with different densities, Commun. Math. Phys., Volume 286 (2009) no. 2, pp. 681–696 | DOI | MR | Zbl
[18] Absence of squirt singularities for the multi-phase Muskat problem, Commun. Math. Phys., Volume 299 (2010) no. 2, pp. 561–575 | DOI | MR | Zbl
[19] A note in stability shifting for the Muskat problem, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., Volume 373 (2015) no. 2050 | MR | Zbl
[20] The confined Muskat problem: differences with the deep water regime, Commun. Math. Sci., Volume 12 (2014) no. 3, pp. 423–455 | MR | Zbl
[21] Non-splat singularity for the one-phase Muskat problem, Trans. Am. Math. Soc. (2014) (in press) | arXiv | DOI | MR | Zbl
[22] The Hele-Shaw problem and area-preserving curve-shortening motions, Arch. Ration. Mech. Anal., Volume 123 (1993) no. 2, pp. 117–151 | DOI | MR | Zbl
[23] Well-posedness of the Muskat problem with
[24] Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856
[25] On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results, Z. Anal. Anwend., Volume 30 (2011) no. 2, pp. 193–218 | MR | Zbl
[26] Classical solutions for Hele-Shaw models with surface tension, Adv. Differ. Equ., Volume 2 (1997) no. 4, pp. 619–642 | MR | Zbl
[27] Absence of splash singularities for SQG sharp fronts and the Muskat problem, Proc. Natl. Acad. Sci., Volume 111 (2014) no. 2, pp. 635–639 | DOI | MR | Zbl
[28] Global existence for the confined Muskat problem, SIAM J. Math. Anal., Volume 46 (2014) no. 2, pp. 1651–1680 | DOI | MR | Zbl
[29] On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof, Nonlinearity, Volume 27 (2014) no. 6, pp. 1471–1498 | DOI | MR | Zbl
[30] Dynamics near unstable, interfacial fluids, Commun. Math. Phys., Volume 270 (2007) no. 3, pp. 635–689 | MR | Zbl
[31] Darcy's flow with prescribed contact angle: well-posedness and lubrication approximation, Arch. Ration. Mech. Anal. (2015), pp. 1–58 | DOI | MR | Zbl
[32] Classical and Multilinear Harmonic Analysis. Vol. II, Cambridge Studies in Advanced Mathematics, vol. 138, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[33] Two fluid systems in porous media. The encroachment of water into an oil sand, J. Appl. Phys., Volume 5 (1934) no. 9, pp. 250–264 | JFM
[34] Evolution of microstructure in unstable porous media flow: a relaxational approach, Commun. Pure Appl. Math., Volume 52 (1999) no. 7, pp. 873–915 | DOI | MR | Zbl
[35] Global existence, singular solutions, and ill-posedness for the Muskat problem, Commun. Pure Appl. Math., Volume 57 (2004) no. 10, pp. 1374–1411 | DOI | MR | Zbl
[36] The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. Ser. A, Volume 245 (1958), pp. 312–329 | MR | Zbl
[37] Relaxation of the incompressible porous media equation, Ann. Sci. Éc. Norm. Supér. (4), Volume 45 (2012) no. 3, pp. 491–509 | Numdam | MR | Zbl
- On nonlinear stability of Muskat bubbles, Journal de Mathématiques Pures et Appliquées, Volume 194 (2025), p. 103664 | DOI:10.1016/j.matpur.2025.103664
- Unbounded solutions for the Muskat problem, Nonlinearity, Volume 38 (2025) no. 2, p. 025014 | DOI:10.1088/1361-6544/ada7b9
- The regularity of the solutions to the Muskat equation: The degenerate regularity near the turnover points, Advances in Mathematics, Volume 454 (2024), p. 109850 | DOI:10.1016/j.aim.2024.109850
- Desingularization of Small Moving Corners for the Muskat Equation, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00175-y
- The second iterate of the Muskat equation in supercritical spaces, Nonlinearity, Volume 37 (2024) no. 4, p. 045008 | DOI:10.1088/1361-6544/ad2b13
- Rigidity of acute angled corners for one phase Muskat interfaces, Advances in Mathematics, Volume 412 (2023), p. 108801 | DOI:10.1016/j.aim.2022.108801
- Regularity of Solutions to the Muskat Equation, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 3 | DOI:10.1007/s00205-023-01862-z
- Endpoint Sobolev Theory for the Muskat Equation, Communications in Mathematical Physics, Volume 397 (2023) no. 3, p. 1043 | DOI:10.1007/s00220-022-04514-7
- Global well‐posedness for the one‐phase Muskat problem, Communications on Pure and Applied Mathematics, Volume 76 (2023) no. 12, p. 3912 | DOI:10.1002/cpa.22124
- A new reformulation of the Muskat problem with surface tension, Journal of Differential Equations, Volume 350 (2023), p. 308 | DOI:10.1016/j.jde.2023.01.003
- Regularity for a special case of two-phase Hele-Shaw flow via parabolic integro-differential equations, Journal of Functional Analysis, Volume 285 (2023) no. 8, p. 110066 | DOI:10.1016/j.jfa.2023.110066
- Global Regularity for Gravity Unstable Muskat Bubbles, Memoirs of the American Mathematical Society, Volume 292 (2023) no. 1455 | DOI:10.1090/memo/1455
- Global solutions for the Muskat problem in the scaling invariant Besov spaceB˙∞,11, Advances in Mathematics, Volume 394 (2022), p. 108122 | DOI:10.1016/j.aim.2021.108122
- Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem, Advances in Mathematics, Volume 399 (2022), p. 108278 | DOI:10.1016/j.aim.2022.108278
- Self-similar solutions for the Muskat equation, Advances in Mathematics, Volume 399 (2022), p. 108294 | DOI:10.1016/j.aim.2022.108294
- Localized Mixing Zone for Muskat Bubbles and Turned Interfaces, Annals of PDE, Volume 8 (2022) no. 1 | DOI:10.1007/s40818-022-00121-w
- Global Well-posedness for the Three Dimensional Muskat Problem in the Critical Sobolev Space, Archive for Rational Mechanics and Analysis, Volume 246 (2022) no. 1, p. 141 | DOI:10.1007/s00205-022-01808-x
- Well-posedness of the Muskat problem in subcritical Lp-Sobolev spaces, European Journal of Applied Mathematics, Volume 33 (2022) no. 2, p. 224 | DOI:10.1017/s0956792520000480
- On the dynamics of the roots of polynomials under differentiation, Journal de Mathématiques Pures et Appliquées, Volume 162 (2022), p. 1 | DOI:10.1016/j.matpur.2022.04.001
- Global existence and decay of the inhomogeneous Muskat problem with Lipschitz initial data, Nonlinearity, Volume 35 (2022) no. 9, p. 4749 | DOI:10.1088/1361-6544/ac803e
- The Muskat problem with 𝐶¹ data, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8559
- On the Cauchy Problem for the Muskat Equation. II: Critical Initial Data, Annals of PDE, Volume 7 (2021) no. 1 | DOI:10.1007/s40818-021-00099-x
- The Vanishing Surface Tension Limit of the Muskat Problem, Communications in Mathematical Physics, Volume 382 (2021) no. 2, p. 1205 | DOI:10.1007/s00220-021-03980-9
- Semiclassical estimates for pseudodifferential operators and the Muskat problem in the unstable regime, Communications in Partial Differential Equations, Volume 46 (2021) no. 1, p. 135 | DOI:10.1080/03605302.2020.1831019
- On the Cauchy problem for the Muskat equation with non-Lipschitz initial data, Communications in Partial Differential Equations, Volume 46 (2021) no. 11, p. 2171 | DOI:10.1080/03605302.2021.1928700
- Mixing solutions for the Muskat problem, Inventiones mathematicae, Volume 226 (2021) no. 1, p. 251 | DOI:10.1007/s00222-021-01045-1
- The Muskat problem with surface tension and equal viscosities in subcritical
-Sobolev spaces, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 635 | DOI:10.1007/s41808-021-00104-1 - Mixing solutions for the Muskat problem with variable speed, Journal of Evolution Equations, Volume 21 (2021) no. 3, p. 3289 | DOI:10.1007/s00028-020-00655-1
- Well-posedness of an asymptotic model for capillarity-driven free boundary Darcy flow in porous media in the critical Sobolev space, Nonlinear Analysis: Real World Applications, Volume 60 (2021), p. 103308 | DOI:10.1016/j.nonrwa.2021.103308
- On well-posedness of the Muskat problem with surface tension, Advances in Mathematics, Volume 374 (2020), p. 107344 | DOI:10.1016/j.aim.2020.107344
- Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 37 (2020) no. 6, p. 1299 | DOI:10.1016/j.anihpc.2020.04.005
- A Paradifferential Approach for Well-Posedness of the Muskat Problem, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 1, p. 35 | DOI:10.1007/s00205-020-01494-7
- Paralinearization of the Muskat Equation and Application to the Cauchy Problem, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 2, p. 545 | DOI:10.1007/s00205-020-01514-6
- Lyapunov Functions, Identities and the Cauchy Problem for the Hele–Shaw Equation, Communications in Mathematical Physics, Volume 377 (2020) no. 2, p. 1421 | DOI:10.1007/s00220-020-03761-w
- Well-Posedness and Stability Results for Some Periodic Muskat Problems, Journal of Mathematical Fluid Mechanics, Volume 22 (2020) no. 3 | DOI:10.1007/s00021-020-00494-7
- Growth in the Muskat problem, Mathematical Modelling of Natural Phenomena, Volume 15 (2020), p. 7 | DOI:10.1051/mmnp/2019021
- On an Asymptotic Model for Free Boundary Darcy Flow in Porous Media, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 5, p. 4937 | DOI:10.1137/19m126623x
- On the Muskat problem with viscosity jump: Global in time results, Advances in Mathematics, Volume 345 (2019), p. 552 | DOI:10.1016/j.aim.2019.01.017
- The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results, Analysis PDE, Volume 12 (2019) no. 2, p. 281 | DOI:10.2140/apde.2019.12.281
- Global well-posedness for the two-dimensional Muskat problem with slope less than 1, Analysis PDE, Volume 12 (2019) no. 4, p. 997 | DOI:10.2140/apde.2019.12.997
- Degraded mixing solutions for the Muskat problem, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 2 | DOI:10.1007/s00526-019-1489-0
- Well-posedness and stability results for a quasilinear periodic Muskat problem, Journal of Differential Equations, Volume 266 (2019) no. 9, p. 5500 | DOI:10.1016/j.jde.2018.10.038
- On the Thin Film Muskat and the Thin Film Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 2 | DOI:10.1007/s00021-019-0437-2
- Weak and strong solutions to the forced fractional Euler alignment system, Nonlinearity, Volume 32 (2019) no. 1, p. 46 | DOI:10.1088/1361-6544/aae736
- Computer-assisted proofs in PDE: a survey, SeMA Journal, Volume 76 (2019) no. 3, p. 459 | DOI:10.1007/s40324-019-00186-x
- Well-posedness and decay to equilibrium for the Muskat problem with discontinuous permeability, Transactions of the American Mathematical Society, Volume 372 (2019) no. 4, p. 2255 | DOI:10.1090/tran/7335
- Piecewise Constant Subsolutions for the Muskat Problem, Communications in Mathematical Physics, Volume 363 (2018) no. 3, p. 1051 | DOI:10.1007/s00220-018-3245-2
- Viscous displacement in porous media: the Muskat problem in 2D, Transactions of the American Mathematical Society, Volume 370 (2018) no. 10, p. 7511 | DOI:10.1090/tran/7287
- On the Muskat problem, Evolution Equations and Control Theory, Volume 5 (2016) no. 4, p. 631 | DOI:10.3934/eect.2016022
Cité par 49 documents. Sources : Crossref