Compact Sobolev embeddings and torsion functions
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 817-843.

For a general open set, we characterize the compactness of the embedding for the homogeneous Sobolev space D01,pLq in terms of the summability of its torsion function. In particular, for 1q<p we obtain that the embedding is continuous if and only if it is compact. The proofs crucially exploit a torsional Hardy inequality that we investigate in detail.

DOI : 10.1016/j.anihpc.2016.05.005
Classification : 46E35, 35P30, 39B72
Mots clés : Compact embedding, Torsional rigidity, Hardy inequalities
@article{AIHPC_2017__34_4_817_0,
     author = {Brasco, Lorenzo and Ruffini, Berardo},
     title = {Compact {Sobolev} embeddings and torsion functions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {817--843},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.05.005},
     mrnumber = {3661862},
     zbl = {1378.46023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/}
}
TY  - JOUR
AU  - Brasco, Lorenzo
AU  - Ruffini, Berardo
TI  - Compact Sobolev embeddings and torsion functions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 817
EP  - 843
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/
DO  - 10.1016/j.anihpc.2016.05.005
LA  - en
ID  - AIHPC_2017__34_4_817_0
ER  - 
%0 Journal Article
%A Brasco, Lorenzo
%A Ruffini, Berardo
%T Compact Sobolev embeddings and torsion functions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 817-843
%V 34
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/
%R 10.1016/j.anihpc.2016.05.005
%G en
%F AIHPC_2017__34_4_817_0
Brasco, Lorenzo; Ruffini, Berardo. Compact Sobolev embeddings and torsion functions. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 817-843. doi : 10.1016/j.anihpc.2016.05.005. http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/

[1] Acerbi, E.; Fusco, N. Regularity for minimizers of non-quadratic functionals: the case 1<p<2 , J. Math. Anal. Appl., Volume 140 (1989), pp. 115–135 | DOI | MR | Zbl

[2] Bañuelos, R.; Van den Berg, M.; Carroll, T. Torsional rigidity and expected lifetime of Brownian motion, J. Lond. Math. Soc., Volume 66 (2002), pp. 499–512 | DOI | MR | Zbl

[3] van den Berg, M. Estimates for the torsion function and Sobolev constants, Potential Anal., Volume 36 (2012), pp. 607–616 | DOI | MR | Zbl

[4] van den Berg, M.; Bucur, D. On the torsion function with Robin or Dirichlet boundary conditions, J. Funct. Anal., Volume 266 (2014), pp. 1647–1666 | DOI | MR | Zbl

[5] van den Berg, M.; Carroll, T. Hardy inequality and Lp estimates for the torsion function, Bull. Lond. Math. Soc., Volume 41 (2009), pp. 980–986 | DOI | MR | Zbl

[6] Brasco, L.; Carlier, G.; Santambrogio, F. Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., Volume 93 (2010), pp. 652–671 | DOI | MR | Zbl

[7] Brezis, H. Analyse fonctionnelle. Théorie et applications, Functional analysis. Theory and applications, Collection Mathématiques Appliquées pour la Maîtrise, Collection of Applied Mathematics for the Master's Degree, Masson, Paris, 1983 (in French) | MR | Zbl

[8] Bucur, D.; Buttazzo, G. On the characterization of the compact embedding of Sobolev spaces, Calc. Var. Partial Differ. Equ., Volume 44 (2012), pp. 455–475 | DOI | MR | Zbl

[9] Bucur, D.; Buttazzo, G.; Velichkov, B. Spectral optimization problems for potentials and measures, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2956–2986 http://cvgmt.sns.it/paper/2245/ (also available at) | DOI | MR | Zbl

[10] Bueno, H.; Ercole, G. Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., Volume 381 (2011), pp. 263–279 | DOI | MR | Zbl

[11] Deny, J.; Lions, J.-L. Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Volume 5 (1954), pp. 305–370 | DOI | Numdam | MR | Zbl

[12] G. De Philippis, personal communication.

[13] DiBenedetto, E. C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983), pp. 827–850 | DOI | MR | Zbl

[14] Giusti, E. Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003 | DOI | MR | Zbl

[15] Hormander, L.; Lions, J.-L. Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand., Volume 4 (1956), pp. 259–270 | DOI | MR | Zbl

[16] Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York–London, 1963 (Revised English edition. Translated from the Russian by Richard A. Silverman) | MR | Zbl

[17] Lucia, M.; Prashanth, S. Simplicity of principal eigenvalue for p-Laplace operator with singular weight, Arch. Math., Volume 86 (2006), pp. 79–89 | DOI | MR | Zbl

[18] Trudinger, N.S. On Harnack type inequalities and their applications to quasilinear elliptic equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 721–747 | DOI | MR | Zbl

Cité par Sources :