For a general open set, we characterize the compactness of the embedding for the homogeneous Sobolev space in terms of the summability of its torsion function. In particular, for we obtain that the embedding is continuous if and only if it is compact. The proofs crucially exploit a torsional Hardy inequality that we investigate in detail.
Mots clés : Compact embedding, Torsional rigidity, Hardy inequalities
@article{AIHPC_2017__34_4_817_0, author = {Brasco, Lorenzo and Ruffini, Berardo}, title = {Compact {Sobolev} embeddings and torsion functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {817--843}, publisher = {Elsevier}, volume = {34}, number = {4}, year = {2017}, doi = {10.1016/j.anihpc.2016.05.005}, mrnumber = {3661862}, zbl = {1378.46023}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/} }
TY - JOUR AU - Brasco, Lorenzo AU - Ruffini, Berardo TI - Compact Sobolev embeddings and torsion functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 817 EP - 843 VL - 34 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/ DO - 10.1016/j.anihpc.2016.05.005 LA - en ID - AIHPC_2017__34_4_817_0 ER -
%0 Journal Article %A Brasco, Lorenzo %A Ruffini, Berardo %T Compact Sobolev embeddings and torsion functions %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 817-843 %V 34 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/ %R 10.1016/j.anihpc.2016.05.005 %G en %F AIHPC_2017__34_4_817_0
Brasco, Lorenzo; Ruffini, Berardo. Compact Sobolev embeddings and torsion functions. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 817-843. doi : 10.1016/j.anihpc.2016.05.005. http://www.numdam.org/articles/10.1016/j.anihpc.2016.05.005/
[1] Regularity for minimizers of non-quadratic functionals: the case , J. Math. Anal. Appl., Volume 140 (1989), pp. 115–135 | DOI | MR | Zbl
[2] Torsional rigidity and expected lifetime of Brownian motion, J. Lond. Math. Soc., Volume 66 (2002), pp. 499–512 | DOI | MR | Zbl
[3] Estimates for the torsion function and Sobolev constants, Potential Anal., Volume 36 (2012), pp. 607–616 | DOI | MR | Zbl
[4] On the torsion function with Robin or Dirichlet boundary conditions, J. Funct. Anal., Volume 266 (2014), pp. 1647–1666 | DOI | MR | Zbl
[5] Hardy inequality and estimates for the torsion function, Bull. Lond. Math. Soc., Volume 41 (2009), pp. 980–986 | DOI | MR | Zbl
[6] Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., Volume 93 (2010), pp. 652–671 | DOI | MR | Zbl
[7] Analyse fonctionnelle. Théorie et applications, Functional analysis. Theory and applications, Collection Mathématiques Appliquées pour la Maîtrise, Collection of Applied Mathematics for the Master's Degree, Masson, Paris, 1983 (in French) | MR | Zbl
[8] On the characterization of the compact embedding of Sobolev spaces, Calc. Var. Partial Differ. Equ., Volume 44 (2012), pp. 455–475 | DOI | MR | Zbl
[9] Spectral optimization problems for potentials and measures, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2956–2986 http://cvgmt.sns.it/paper/2245/ (also available at) | DOI | MR | Zbl
[10] Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., Volume 381 (2011), pp. 263–279 | DOI | MR | Zbl
[11] Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Volume 5 (1954), pp. 305–370 | DOI | Numdam | MR | Zbl
[12] G. De Philippis, personal communication.
[13] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983), pp. 827–850 | DOI | MR | Zbl
[14] Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003 | DOI | MR | Zbl
[15] Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand., Volume 4 (1956), pp. 259–270 | DOI | MR | Zbl
[16] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York–London, 1963 (Revised English edition. Translated from the Russian by Richard A. Silverman) | MR | Zbl
[17] Simplicity of principal eigenvalue for p-Laplace operator with singular weight, Arch. Math., Volume 86 (2006), pp. 79–89 | DOI | MR | Zbl
[18] On Harnack type inequalities and their applications to quasilinear elliptic equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 721–747 | DOI | MR | Zbl
Cité par Sources :