We explore the relationship between two reference functions arising in the analysis of the Ginzburg–Landau functional. The first function describes the distribution of superconductivity in a type II superconductor subjected to a constant magnetic field. The second function describes the distribution of superconductivity in a type II superconductor submitted to a variable magnetic field that vanishes non-degenerately along a smooth curve.
@article{AIHPC_2017__34_2_423_0, author = {Helffer, Bernard and Kachmar, Ayman}, title = {From constant to non-degenerately vanishing magnetic fields in superconductivity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {423--438}, publisher = {Elsevier}, volume = {34}, number = {2}, year = {2017}, doi = {10.1016/j.anihpc.2015.12.008}, mrnumber = {3610939}, zbl = {1361.82039}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.008/} }
TY - JOUR AU - Helffer, Bernard AU - Kachmar, Ayman TI - From constant to non-degenerately vanishing magnetic fields in superconductivity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 423 EP - 438 VL - 34 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.008/ DO - 10.1016/j.anihpc.2015.12.008 LA - en ID - AIHPC_2017__34_2_423_0 ER -
%0 Journal Article %A Helffer, Bernard %A Kachmar, Ayman %T From constant to non-degenerately vanishing magnetic fields in superconductivity %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 423-438 %V 34 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.008/ %R 10.1016/j.anihpc.2015.12.008 %G en %F AIHPC_2017__34_2_423_0
Helffer, Bernard; Kachmar, Ayman. From constant to non-degenerately vanishing magnetic fields in superconductivity. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 423-438. doi : 10.1016/j.anihpc.2015.12.008. http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.008/
[1] The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire., Volume 32 (2015), pp. 325–345 | DOI | Numdam | MR | Zbl
[2] Energy and vorticity of the Ginzburg–Landau model with variable magnetic field, Asymptot. Anal., Volume 93 (2015), pp. 75–114 | MR | Zbl
[3] Pinning with a variable magnetic field of the two dimensional Ginzburg–Landau model, 2015 (preprint) | arXiv
[4] On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptot. Anal., Volume 41 (2015) no. 3–4, pp. 215–258 | MR | Zbl
[5] Persistence of superconductivity in thin shells beyond , 2014 (Commun. Contemp. Math.) | arXiv | DOI | MR
[6] Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhäuser, 2010 | MR | Zbl
[7] The ground state energy of the three dimensional Ginzburg–Landau functional. Part I. Bulk regime, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 339–383 | DOI | MR | Zbl
[8] Boundary effects in superconductors, Rev. Mod. Phys. (January 1964) | DOI
[9] The Ginzburg–Landau functional with a vanishing magnetic field, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 55–122 | DOI | MR | Zbl
[10] Hearing the zero locus of a magnetic field, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 651–675 | DOI | MR | Zbl
[11] J.-P. Miqueu, Equation de Schrödinger avec un champ magnétique qui s'annule, Thèse de doctorat, in preparation.
[12] Upper critical field for superconductors with edges and corners, Calc. Var. Partial Differ. Equ., Volume 14 (2002) no. 4, pp. 447–482 | MR | Zbl
[13] Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 4201–4227 | MR | Zbl
[14] Vortices for the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser, 2007 | DOI | MR | Zbl
[15] The decrease of bulk superconductivity close to the second critical field in the Ginzburg–Landau model, SIAM J. Math. Anal., Volume 34 (2003) no. 4, pp. 939–956 | DOI | MR | Zbl
Cité par Sources :