In this paper we establish the existence of Lipschitz-continuous solutions to the Cauchy Dirichlet problem of evolutionary partial differential equations
Mots clés : Existence, Parabolic equations, Bounded slope condition, Lipschitz solutions
@article{AIHPC_2017__34_2_355_0, author = {B\"ogelein, Verena and Duzaar, Frank and Marcellini, Paolo and Signoriello, Stefano}, title = {Parabolic equations and the bounded slope condition}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {355--379}, publisher = {Elsevier}, volume = {34}, number = {2}, year = {2017}, doi = {10.1016/j.anihpc.2015.12.005}, mrnumber = {3610936}, zbl = {1372.35161}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.005/} }
TY - JOUR AU - Bögelein, Verena AU - Duzaar, Frank AU - Marcellini, Paolo AU - Signoriello, Stefano TI - Parabolic equations and the bounded slope condition JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 355 EP - 379 VL - 34 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.005/ DO - 10.1016/j.anihpc.2015.12.005 LA - en ID - AIHPC_2017__34_2_355_0 ER -
%0 Journal Article %A Bögelein, Verena %A Duzaar, Frank %A Marcellini, Paolo %A Signoriello, Stefano %T Parabolic equations and the bounded slope condition %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 355-379 %V 34 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.005/ %R 10.1016/j.anihpc.2015.12.005 %G en %F AIHPC_2017__34_2_355_0
Bögelein, Verena; Duzaar, Frank; Marcellini, Paolo; Signoriello, Stefano. Parabolic equations and the bounded slope condition. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 355-379. doi : 10.1016/j.anihpc.2015.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2015.12.005/
[1] Doubly nonlinear evolution equations as convex minimization, SIAM J. Math. Anal., Volume 46 (2014) no. 3, pp. 1922–1945 | DOI | MR | Zbl
[2] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008 | MR | Zbl
[3] Parabolic systems with -growth: a variational approach, Arch. Ration. Mech. Anal., Volume 210 (2013) no. 1, pp. 219–267 | DOI | MR | Zbl
[4] Existence of evolutionary variational solutions via the calculus of variations, J. Differ. Equ., Volume 256 (2014) no. 12, pp. 3912–3942 | DOI | MR | Zbl
[5] Nonlocal diffusion equations, J. Math. Anal. Appl., Volume 432 (2015) no. 1, pp. 398–428 | DOI | MR | Zbl
[6] The boundary regularity of nonlinear parabolic systems I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 1, pp. 201–255 | Numdam | MR | Zbl
[7] The regularity of general parabolic systems with degenerate diffusion, Mem. Am. Math. Soc., Volume 221 (2013) | MR | Zbl
[8] On the lower bounded slope condition, J. Convex Anal., Volume 14 (2007) no. 1, pp. 119–136 | MR | Zbl
[9] Boundary continuity of solutions to a basic problem in the calculus of variations, Adv. Calc. Var., Volume 3 (2010) no. 1, pp. 1–27 | DOI | MR | Zbl
[10] On the bounded slope condition and the validity of the Euler Lagrange equation, SIAM J. Control Optim., Volume 40 (2001–2002) no. 4, pp. 1270–1279 | DOI | MR | Zbl
[11] Continuity of solutions to a basic problem in the calculus of variations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 4 (2005) no. 3, pp. 511–530 | Numdam | MR | Zbl
[12] Spazi e loro proprieta, Ann. Mat. Pura Appl. (4), Volume 69 (1965), pp. 383–392 | DOI | MR | Zbl
[13] Conjectures concerning some evolution problems. (Italian) A celebration of John F. Nash, Jr., Duke Math. J., Volume 81 (1996) no. 2, pp. 255–268 | MR | Zbl
[14] Direct Methods in the Calculus of Variations, World Scientific, Singapore and River Edge and NJ, 2003 | DOI | MR | Zbl
[15] Über das Plateausche Problem, Math. Ann., Volume 97 (1927) no. 1, pp. 124–158 | DOI | JFM | MR
[16] On spherical image maps whose Jacobians do not change sign, Am. J. Math., Volume 81 (1959), pp. 901–920 | DOI | MR | Zbl
[17] On some non-linear elliptic differential-functional equations, Acta Math., Volume 115 (1966), pp. 271–310 | DOI | MR | Zbl
[18] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Am. Math. Soc., Volume 108 (1994) no. 520 | MR | Zbl
[19] Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4), Volume 185 (2006) no. 3, pp. 411–435 | DOI | MR | Zbl
[20] Pseudosolutions of the time-dependent minimal surface problem, J. Differ. Equ., Volume 30 (1978) no. 3, pp. 340–364 | DOI | MR | Zbl
[21] Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | DOI | MR | Zbl
[22] Existence and Lipschitz regularity for minima, Proc. Am. Math. Soc., Volume 130 (2002) no. 2, pp. 395–404 | DOI | MR | Zbl
[23] Lipschitz regularity for minima without strict convexity of the Lagrangian, J. Differ. Equ., Volume 243 (2007) no. 2, pp. 388–413 | DOI | MR | Zbl
[24] Hölder regularity for a classical problem of the calculus of variations, Adv. Calc. Var., Volume 2 (2009) no. 4, pp. 311–320 | DOI | MR | Zbl
[25] Existence theorems for nonconvex problems, J. Math. Pures Appl. (9), Volume 62 (1983) no. 3, pp. 349–359 | MR | Zbl
[26] Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., Volume 17 (2011) no. 1, pp. 52–85 | DOI | Numdam | MR | Zbl
[27] Un teorema di esistenza e unicità per il problema dell'area minima in n variabili, Ann. Sc. Norm. Super. Pisa, Volume 19 (1965) no. 3, pp. 233–249 | Numdam | MR | Zbl
[28] A Harnack inequality for parabolic differential equations, Commun. Pure Appl. Math., Volume 17 (1964), pp. 101–134 | DOI | MR | Zbl
[29] Correction to: ”A Harnack inequality for parabolic differential equations”, Commun. Pure Appl. Math., Volume 20 (1967), pp. 231–236 | DOI | MR | Zbl
[30] Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi, Ann. Math. (2), Volume 175 (2012) no. 3, pp. 1551–1574 | DOI | MR | Zbl
[31] Compact sets in the space , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 | MR | Zbl
[32] On some regular multiple integral problems in the calculus of variations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 383–421 | DOI | MR | Zbl
[33] Parabolic Q-minima and minimal solutions to variational flow, Manuscr. Math., Volume 59 (1987) no. 1, pp. 63–107 | DOI | MR | Zbl
Cité par Sources :