The Cauchy problem on large time for the Water Waves equations with large topography variations
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 89-118.

This paper shows that the long time existence of solutions to the Water Waves equations remains true with a large topography in presence of surface tension. More precisely, the dimensionless equations depend strongly on three parameters ε,μ,β measuring the amplitude of the waves, the shallowness and the amplitude of the bathymetric variations respectively. In [2], the local existence of solutions to this problem is proved on a time interval of size 1max(β,ε) and uniformly with respect to μ. In presence of large bathymetric variations (typically βε), the existence time is therefore considerably reduced. We remove here this restriction and prove the local existence on a time interval of size 1ε under the constraint that the surface tension parameter must be at the same order as the shallowness parameter μ. We also show that the result of [5] dealing with large bathymetric variations for the Shallow Water equations can be viewed as a particular endpoint case of our result.

DOI : 10.1016/j.anihpc.2015.10.002
Mots clés : Water Waves, Cauchy problem, Large time, Bathymetric
@article{AIHPC_2017__34_1_89_0,
     author = {M\'esognon-Gireau, Beno{\^\i}t},
     title = {The {Cauchy} problem on large time for the {Water} {Waves} equations with large topography variations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {89--118},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.10.002},
     mrnumber = {3592680},
     zbl = {1359.35154},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.002/}
}
TY  - JOUR
AU  - Mésognon-Gireau, Benoît
TI  - The Cauchy problem on large time for the Water Waves equations with large topography variations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 89
EP  - 118
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.002/
DO  - 10.1016/j.anihpc.2015.10.002
LA  - en
ID  - AIHPC_2017__34_1_89_0
ER  - 
%0 Journal Article
%A Mésognon-Gireau, Benoît
%T The Cauchy problem on large time for the Water Waves equations with large topography variations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 89-118
%V 34
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.002/
%R 10.1016/j.anihpc.2015.10.002
%G en
%F AIHPC_2017__34_1_89_0
Mésognon-Gireau, Benoît. The Cauchy problem on large time for the Water Waves equations with large topography variations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 89-118. doi : 10.1016/j.anihpc.2015.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2015.10.002/

[1] Alazard, Thomas; Burq, Nicolas; Zuily, Claude The Water–Wave Equations: From Zakharov to Euler, Progr. Nonlinear Differential Equations Appl., vol. 84, Birkhäuser/Springer, New York, 2013 | DOI | MR | Zbl

[2] Borys, Alvarez-Samaniego; Lannes, David Large time existence for 3D water-waves and asymptotics, Invent. Math., Volume 171 (2008) no. 3, pp. 485–541 | MR | Zbl

[3] Boussinesq, Joseph Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Séances Acad. Sci. (1871), pp. 256–260 | JFM

[4] Boussinesq, Joseph Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. (1872), pp. 55–108 | JFM | Numdam | MR

[5] Bresch, D.; Métivier, G. Anelastic limits for Euler-type systems, Appl. Math. Res. Express, Volume 2010 (2010) no. 2, pp. 119–141 | MR | Zbl

[6] Craig, W.; Sulem, C. Numerical simulation of gravity waves, J. Comput. Phys., Volume 108 (1993) no. 1, pp. 73–83 | DOI | MR | Zbl

[7] Craig, W.; Sulem, C.; Sulem, P.-L. Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, Volume 5 (1992) no. 2, pp. 497–522 | DOI | MR | Zbl

[8] Deny, J.; Lions, J.L. Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Volume 5 (1955) no. 305–370, pp. 1953–1954 | Numdam | MR | Zbl

[9] Ebin, D.G. The equations of motion of a perfect fluid with free boundary are not well posed, Commun. Partial Differ. Equ., Volume 1987 (1987) no. 12, pp. 1175–1201 | MR | Zbl

[10] Iguchi, Tatsuo A shallow water approximation for water waves, J. Math. Kyoto Univ., Volume 49 (2009) no. 1, pp. 13–55 | MR | Zbl

[11] Lannes, David A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481–567 | MR | Zbl

[12] Lannes, David The Water Waves Problem, American Mathematical Society, 2013 | DOI | MR | Zbl

[13] David Lannes, Angel Castro, Well-posedness and shallow-water stability for a new hamiltonian formulation of the water waves equations with vorticity (2015), submitted for publication. | MR

[14] Lannes, David; Saut, Jean-Claude Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity (2006), pp. 2853–2875 | MR | Zbl

[15] Benoît Mésognon-Gireau, The cauchy problem on large time for a boussinesq peregrine equation with large topography variations (2015), submitted for publication. | MR

[16] Métivier, G.; Schochet, S. The incompressible limit of the non-isentropic euler equations, Arch. Ration. Mech. Anal., Volume 158 (2001) no. 1, pp. 61–90 | DOI | MR | Zbl

[17] Peregrine, D. Howell Long waves on a beach, J. Fluid Mech. (1967), pp. 815–827 | DOI | Zbl

[18] Rousset, Frederic; Tzvetkov, Nikolay Transverse instability of the line solitary water-waves, Invent. Math., Volume 184 (2011) no. 2, pp. 257–388 | MR | Zbl

[19] Taylor, G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. Ser. A, Volume 1950 (1950) no. 201, pp. 192–196 | MR | Zbl

[20] Taylor, M.E. Partial Differential Equations III, vol. 117, Springer, 1997 | MR | Zbl

[21] S. Wu, A blow-up criteria and the existence of 2d gravity water waves with angled crests (February 2015), ArXiv e-prints.

[22] Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., Volume 1968 (1968) no. 9, pp. 190–194

Cité par Sources :