Analysis of degenerate cross-diffusion population models with volume filling
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 1-29.

A class of parabolic cross-diffusion systems modeling the interaction of an arbitrary number of population species is analyzed in a bounded domain with no-flux boundary conditions. The equations are formally derived from a random-walk lattice model in the diffusion limit. Compared to previous results in the literature, the novelty is the combination of general degenerate diffusion and volume-filling effects. Conditions on the nonlinear diffusion coefficients are identified, which yield a formal gradient-flow or entropy structure. This structure allows for the proof of global-in-time existence of bounded weak solutions and the exponential convergence of the solutions to the constant steady state. The existence proof is based on an approximation argument, the entropy inequality, and new nonlinear Aubin–Lions compactness lemmas. The proof of the large-time behavior employs the entropy estimate and convex Sobolev inequalities. Moreover, under simplifying assumptions on the nonlinearities, the uniqueness of weak solutions is shown by using the H1 method, the E-monotonicity technique of Gajewski, and the subadditivity of the Fisher information.

DOI : 10.1016/j.anihpc.2015.08.003
Mots clés : Cross diffusion, Population dynamics, Gradient-flow structure, Entropy variables, Nonlinear Aubin–Lions lemmas
@article{AIHPC_2017__34_1_1_0,
     author = {Zamponi, Nicola and J\"ungel, Ansgar},
     title = {Analysis of degenerate cross-diffusion population models with volume filling},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--29},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.08.003},
     mrnumber = {3592676},
     zbl = {1386.35167},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.003/}
}
TY  - JOUR
AU  - Zamponi, Nicola
AU  - Jüngel, Ansgar
TI  - Analysis of degenerate cross-diffusion population models with volume filling
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1
EP  - 29
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.003/
DO  - 10.1016/j.anihpc.2015.08.003
LA  - en
ID  - AIHPC_2017__34_1_1_0
ER  - 
%0 Journal Article
%A Zamponi, Nicola
%A Jüngel, Ansgar
%T Analysis of degenerate cross-diffusion population models with volume filling
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1-29
%V 34
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.003/
%R 10.1016/j.anihpc.2015.08.003
%G en
%F AIHPC_2017__34_1_1_0
Zamponi, Nicola; Jüngel, Ansgar. Analysis of degenerate cross-diffusion population models with volume filling. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 1-29. doi : 10.1016/j.anihpc.2015.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.003/

[1] Amann, H. Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., Volume 202 (1989), pp. 219–250 | DOI | MR | Zbl

[2] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Commun. Partial Differ. Equ., Volume 26 (2001), pp. 43–100 | DOI | MR | Zbl

[3] Bakry, D.; Emery, M. Diffusions hypercontractives, Séminaire de probabilités XIX, 1983/1984, Lect. Notes Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206 | DOI | Numdam | MR | Zbl

[4] Bakry, D.; Gentil, I.; Ledoux, M. Analysis and Geometry of Markov Diffusion Operators, Springer, Cham, 2014 | DOI | MR | Zbl

[5] Bendahmane, M.; Lepoutre, T.; Marrocco, A.; Perthame, B. Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., Volume 92 (2009), pp. 651–667 | DOI | MR | Zbl

[6] Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011 | DOI | MR | Zbl

[7] Burger, M.; Di Francesco, M.; Pietschmann, J.-F.; Schlake, B. Nonlinear cross-diffusion with size exclusion, SIAM J. Math. Anal., Volume 42 (2010), pp. 2842–2871 | DOI | MR | Zbl

[8] Burger, M.; Schlake, B.; Wolfram, W.-T. Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries, Nonlinearity, Volume 25 (2012), pp. 961–990 | DOI | MR | Zbl

[9] Chen, L.; Jüngel, A. Analysis of a multi-dimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., Volume 36 (2004), pp. 301–322 | DOI | MR

[10] Chen, L.; Jüngel, A. Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differ. Equ., Volume 224 (2006), pp. 39–59 | DOI | MR | Zbl

[11] Chen, X.; Jüngel, A.; Liu, J.-G. A note on Aubin–Lions–Dubinskii lemmas, Acta Appl. Math., Volume 133 (2014), pp. 33–43 | DOI | MR | Zbl

[12] Desvillettes, L.; Fellner, K. Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations, J. Math. Anal. Appl., Volume 319 (2006), pp. 157–176 | DOI | MR | Zbl

[13] Desvillettes, L.; Fellner, K. Exponential convergence to equilibrium for a nonlinear reaction–diffusion systems arising in reversible chemistry, System Modelling and Optimization, Proceedings of the IFIP TC 7 Conference 2013, Adv. Inform. Commun. Techn., vol. 443, 2014, pp. 96–104 | Zbl

[14] Desvillettes, L.; Lepoutre, T.; Moussa, A. Entropy, duality and cross diffusion, SIAM J. Math. Anal., Volume 46 (2014), pp. 820–853 | DOI | MR | Zbl

[15] Desvillettes, L.; Lepoutre, T.; Moussa, A.; Trescases, A. On the entropic structure of reaction–cross diffusion systems, 2014 (Preprint) | arXiv | MR | Zbl

[16] Dreher, M.; Jüngel, A. Compact families of piecewise constant functions in Lp(0,T;B) , Nonlinear Anal., Volume 75 (2012), pp. 3072–3077 | DOI | MR | Zbl

[17] Gajewski, H. On a variant of monotonicity and its application to differential equations, Nonlinear Anal., Volume 22 (1994), pp. 73–80 | DOI | MR | Zbl

[18] Gajewski, H.; Skrypnik, I. On the uniqueness problem for nonlinear parabolic equations, Discrete Contin. Dyn. Syst., Volume 10 (2004), pp. 315–336 | MR | Zbl

[19] Galiano, G.; Garzón, M.; Jüngel, A. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., Volume 93 (2003), pp. 655–673 | DOI | MR | Zbl

[20] Glitzky, A.; Gröger, K.; Hünlich, R. Free energy and dissipation rate for reaction–diffusion processes of electrically charged species, Appl. Anal., Volume 60 (1996), pp. 201–217 | DOI | MR | Zbl

[21] Jüngel, A. The boundedness-by-entropy principle for cross-diffusion systems, Nonlinearity, Volume 28 (2015), pp. 1963–2001 | DOI | MR | Zbl

[22] Kim, J. Smooth solutions to a quasi-linear system of diffusion equations for a certain population model, Nonlinear Anal., Volume 8 (1984), pp. 1121–1144 | MR | Zbl

[23] Le, D. Cross diffusion systems in n spatial dimensional domains, Indiana Univ. Math. J., Volume 51 (2002), pp. 625–643 | MR | Zbl

[24] Liero, M.; Mielke, A. Gradient structures and geodesic convexity for reaction–diffusion systems, Philos. Trans. R. Soc. A, Volume 371 (2005), pp. 20120346 (28 pages) 2013 | MR | Zbl

[25] Moussa, A. Some variants of the classical Aubin–Lions lemma, 2014 (Preprint) | arXiv | MR | Zbl

[26] Murakawa, H. A relation between cross-diffusion and reaction–diffusion, Discrete Contin. Dyn. Syst., Ser. S, Volume 5 (2012), pp. 147–158 | MR | Zbl

[27] Murakawa, H. Error estimates for discrete-time approximations of nonlinear cross-diffusion systems, SIAM J. Numer. Anal., Volume 52 (2014), pp. 955–974 | DOI | MR | Zbl

[28] Pacard, F.; Unterreiter, A. A variational analysis of the thermal equilibrium state of charged quantum fluids, Commun. Partial Differ. Equ., Volume 20 (1995), pp. 885–900 | DOI | MR | Zbl

[29] Painter, K. Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis, Bull. Math. Biol., Volume 71 (2009), pp. 1117–1147 | DOI | MR | Zbl

[30] Shigesada, N.; Kawasaki, K.; Teramoto, E. Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979), pp. 83–99 | DOI | MR

[31] Simon, J. Compact sets in the space Lp(0,T;B) , Ann. Math. Pura Appl., Volume 146 (1987), pp. 65–96 | MR | Zbl

[32] Simpson, M.; Landman, K.; Hughes, B. Multi-species simple exclusion processes, Physica A, Volume 388 (2009), pp. 399–406 | DOI

[33] Zinsl, J.; Matthes, D. Transport distances and geodesic convexity for systems of degenerate diffusion equations, Calc. Var. Partial Differ. Equ. (2015) (to appear in) | DOI | MR | Zbl

Cité par Sources :