In this paper we will prove the existence of weak solutions to the Korteweg–de Vries initial value problem on the real line with initial data; moreover, we will study the problem of orbital and asymptotic stability of solitons for integers ; finally, we will also prove new a priori bound for solutions to the Korteweg–de Vries equation. The paper will utilise the Miura transformation to link the Korteweg–de Vries equation to the modified Korteweg–de Vries equation.
@article{AIHPC_2015__32_5_1071_0, author = {Buckmaster, Tristan and Koch, Herbert}, title = {The {Korteweg{\textendash}de} {Vries} equation at $ {H}^{-1}$ regularity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1071--1098}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.05.004}, mrnumber = {3400442}, zbl = {1331.35300}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.004/} }
TY - JOUR AU - Buckmaster, Tristan AU - Koch, Herbert TI - The Korteweg–de Vries equation at $ {H}^{-1}$ regularity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1071 EP - 1098 VL - 32 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.004/ DO - 10.1016/j.anihpc.2014.05.004 LA - en ID - AIHPC_2015__32_5_1071_0 ER -
%0 Journal Article %A Buckmaster, Tristan %A Koch, Herbert %T The Korteweg–de Vries equation at $ {H}^{-1}$ regularity %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1071-1098 %V 32 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.004/ %R 10.1016/j.anihpc.2014.05.004 %G en %F AIHPC_2015__32_5_1071_0
Buckmaster, Tristan; Koch, Herbert. The Korteweg–de Vries equation at $ {H}^{-1}$ regularity. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 1071-1098. doi : 10.1016/j.anihpc.2014.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.004/
[1] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocussing equations, Am. J. Math. 125 no. 6 (2003), 1235 -1293 | MR | Zbl
, , ,[2] Sharp global well-posedness for KdV and modified KdV on and , J. Am. Math. Soc. 16 no. 3 (2003), 705 -749 | MR | Zbl
, , , , ,[3] On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Commun. Math. Phys. 203 no. 2 (1999), 341 -347 | MR | Zbl
, ,[4] Global well-posedness of Korteweg–de Vries equation in , J. Math. Pures Appl. (9) 91 no. 6 (2009), 583 -597 | MR | Zbl
,[5] Global wellposedness of KdV in , Duke Math. J. 135 no. 2 (2006), 327 -360 | MR | Zbl
, ,[6] The Miura map on the line, Int. Math. Res. Not. no. 50 (2005), 3091 -3133 | MR | Zbl
, , , ,[7] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in Applied Mathematics, Adv. Math. Suppl. Stud. vol. 8 , Academic Press, New York (1983), 93 -128 | MR | Zbl
,[8] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math. 46 no. 4 (1993), 527 -620 | MR | Zbl
, , ,[9] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 no. 3 (2001), 617 -633 | MR | Zbl
, , ,[10] Well-posedness of the Cauchy problem for the Korteweg–de Vries equation at the critical regularity, Differ. Integral Equ. 22 no. 5–6 (2009), 447 -464 | MR | Zbl
,[11] A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. no. 16 (2007) | MR | Zbl
, ,[12] Korteweg–de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952 -960 | MR | Zbl
, , , ,[13] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, The Stability of Matter: From Atoms to Stars (2005), 205 -239
, ,[14] B. Liu, A-priori bounds for KdV equation below , arXiv e-prints, 2011. | MR
[15] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 no. 3 (2001), 219 -254 | MR | Zbl
, ,[16] stability of solitons for KdV equation, Int. Math. Res. Not. no. 13 (2003), 735 -753 | MR | Zbl
, ,[17] Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9 (1968), 1204 -1209 | MR | Zbl
, , ,[18] Stability of the line soliton of the KP-II equation under periodic transverse perturbations, Math. Ann. (2011), 1 -32 | MR
, ,[19] A note on ill-posedness for the KdV equation, Differ. Integral Equ. 24 no. 7–8 (2011), 759 -765 | MR | Zbl
,[20] Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, Harcourt Brace Jovanovich Publishers, New York (1975) | MR | Zbl
, ,[21] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Ser. Nonlinear Anal. Appl. vol. 3 , Walter de Gruyter & Co., Berlin (1996) | MR | Zbl
, ,[22] Nonlinear dispersive equations, Local and Global Analysis, CBMS Reg. Conf. Ser. Math. vol. 106 , Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006) | MR | Zbl
,[23] The Cauchy problem for the Korteweg–de Vries equation with measures as initial data, SIAM J. Math. Anal. 20 no. 3 (1989), 582 -588 | MR | Zbl
,[24] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math. 39 no. 1 (1986), 51 -67 | MR | Zbl
,Cité par Sources :