We derive homogenized von Kármán shell theories starting from three dimensional nonlinear elasticity. The original three dimensional model contains two small parameters: the period of oscillation ε of the material properties and the thickness h of the shell. Depending on the asymptotic ratio of these two parameters, we obtain different asymptotic theories. In the case we identify two different asymptotic theories, depending on the ratio of h and . In the case of convex shells we obtain a complete picture in the whole regime .
@article{AIHPC_2015__32_5_1039_0, author = {Hornung, Peter and Vel\v{c}i\'c, Igor}, title = {Derivation of a homogenized {von-K\'arm\'an} shell theory from {3D} elasticity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1039--1070}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.05.003}, mrnumber = {3400441}, zbl = {1329.74178}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.003/} }
TY - JOUR AU - Hornung, Peter AU - Velčić, Igor TI - Derivation of a homogenized von-Kármán shell theory from 3D elasticity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1039 EP - 1070 VL - 32 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.003/ DO - 10.1016/j.anihpc.2014.05.003 LA - en ID - AIHPC_2015__32_5_1039_0 ER -
%0 Journal Article %A Hornung, Peter %A Velčić, Igor %T Derivation of a homogenized von-Kármán shell theory from 3D elasticity %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1039-1070 %V 32 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.003/ %R 10.1016/j.anihpc.2014.05.003 %G en %F AIHPC_2015__32_5_1039_0
Hornung, Peter; Velčić, Igor. Derivation of a homogenized von-Kármán shell theory from 3D elasticity. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 1039-1070. doi : 10.1016/j.anihpc.2014.05.003. http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.003/
[1] Moderately wrinkled plate, Asymptot. Anal. 16 no. 3–4 (1998), 273 -297 | MR | Zbl
, , , ,[2] Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 no. 6 (1992), 1482 -1518 | MR | Zbl
,[3] Slightly wrinkled plate, Asymptot. Anal. 13 no. 1 (1996), 1 -29 | MR | Zbl
, , ,[4] Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl. (9) 96 no. 1 (2011), 29 -57 | MR | Zbl
, ,[5] 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J. 49 no. 4 (2000), 1367 -1404 | MR | Zbl
, , ,[6] Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. Detta Accad. XL, Parte I, Mem. Mat. (5) 9 no. 1 (1985), 313 -321 | MR | Zbl
,[7] Mathematical Elasticity, vol. III, Stud. Math. Appl. vol. 29 , North-Holland Publishing Co., Amsterdam (2000) | MR | Zbl
,[8] Compensated compactness for nonlinear homogenization and reduction of dimension, Calc. Var. Partial Differ. Equ. 20 no. 1 (2004), 65 -91 | MR | Zbl
, ,[9] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math. 55 no. 11 (2002), 1461 -1506 | MR | Zbl
, , ,[10] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 no. 2 (2006), 183 -236 | MR | Zbl
, , ,[11] Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 no. 8 (2003), 697 -702 | MR | Zbl
, , , ,[12] Homogenization of thin piezoelectric perforated shells, M2AN Math. Model. Numer. Anal. 41 no. 5 (2007), 875 -895 | EuDML | Numdam | MR | Zbl
, , , ,[13] Compensated compactness for homogenization and reduction of dimension: the case of elastic laminates, Asymptot. Anal. 47 no. 1–2 (2006), 139 -169 | MR | Zbl
, ,[14] On the rigidity of certain surfaces with folds and applications to shell theory, Arch. Ration. Mech. Anal. 129 no. 1 (1995), 11 -45 | MR | Zbl
, ,[15] Derivation of the homogenized bending plate model from 3D nonlinear elasticity, Calc. Var. Partial Differ. Equ. (2014), http://dx.doi.org/10.1007/s00526-013-0691-8 | Zbl
, , ,[16] Continuation of infinitesimal bendings on developable surfaces and equilibrium equations for nonlinear bending theory of plates, Commun. Partial Differ. Equ. (2014) | MR | Zbl
,[17] Peter Hornung, The Willmore functional on isometric immersions, 2012, MIS MPG preprint.
[18] Riemannian Geometry and Geometric Analysis, Universitext , Springer, Heidelberg (2011) | MR | Zbl
,[19] A one-dimensional model of homogenized rod, Glas. Mat. 24(44) no. 2–3 (1989), 271 -290 | MR | Zbl
, ,[20] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9) 74 no. 6 (1995), 549 -578 | MR | Zbl
, ,[21] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci. 6 no. 1 (1996), 59 -84 | MR | Zbl
, ,[22] Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 no. 2 (2010), 253 -295 | Numdam | MR | Zbl
, , ,[23] The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells, Arch. Ration. Mech. Anal. 200 no. 3 (2011), 1023 -1050 | MR | Zbl
, , ,[24] Asymptotic analysis and homogenization, Plates, Laminates and Shells, Ser. Adv. Math. Appl. Sci. vol. 52 , World Scientific Publishing Co. Inc., River Edge, NJ (2000) | MR | Zbl
, ,[25] Homogenization of thin elastic shell, J. Elast. 15 no. 1 (1985), 69 -87 | MR | Zbl
,[26] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal. 99 no. 3 (1987), 189 -212 | MR | Zbl
,[27] Homogenization, linearization and dimension reduction in elasticity with variational methods, Tecnische Universität München (2010)
,[28] Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity, Arch. Ration. Mech. Anal. 206 no. 2 (2012), 645 -706 | MR | Zbl
,[29] Derivation of a homogenized von Kármán plate theory from 3D elasticity, Math. Models Methods Appl. Sci. 23 no. 14 (2013), 2701 -2748 | MR | Zbl
, ,[30] Plate theory for stressed heterogeneous multilayers of finite bending energy, J. Math. Pures Appl. (9) 88 no. 1 (2007), 107 -122 | MR | Zbl
,[31] A note on the derivation of homogenized bending plate model, http://www.mis.mpg.de/publications/preprints/2013/prepr2013-34.html | MR | Zbl
,[32] On the general homogenization and γ-closure for the equations of von kármán plate, http://www.mis.mpg.de/preprints/2013/preprint2013_61.pdf | Zbl
,[33] Periodically wrinkled plate of Föppl von Kármán type, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 12 no. 2 (2013), 275 -307 | Numdam | MR | Zbl
,[34] Towards a two-scale calculus, ESAIM Control Optim. Calc. Var. 12 no. 3 (2006), 371 -397 | EuDML | Numdam | MR | Zbl
,[35] Two-scale convergence of some integral functionals, Calc. Var. Partial Differ. Equ. 29 no. 2 (2007), 239 -265 | MR | Zbl
,Cité par Sources :