In this paper, we extend to the case of initial data constituted of a Dirac mass plus a bounded density (with finite moments) the theory of Lions and Perthame [8] for the Vlasov–Poisson equation. Our techniques also provide polynomially growing in time estimates for moments of the bounded density.
@article{AIHPC_2015__32_2_373_0, author = {Desvillettes, Laurent and Miot, Evelyne and Saffirio, Chiara}, title = {Polynomial propagation of moments and global existence for a {Vlasov{\textendash}Poisson} system with a point charge}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {373--400}, publisher = {Elsevier}, volume = {32}, number = {2}, year = {2015}, doi = {10.1016/j.anihpc.2014.01.001}, zbl = {1323.35178}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.01.001/} }
TY - JOUR AU - Desvillettes, Laurent AU - Miot, Evelyne AU - Saffirio, Chiara TI - Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 373 EP - 400 VL - 32 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.01.001/ DO - 10.1016/j.anihpc.2014.01.001 LA - en ID - AIHPC_2015__32_2_373_0 ER -
%0 Journal Article %A Desvillettes, Laurent %A Miot, Evelyne %A Saffirio, Chiara %T Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 373-400 %V 32 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.01.001/ %R 10.1016/j.anihpc.2014.01.001 %G en %F AIHPC_2015__32_2_373_0
Desvillettes, Laurent; Miot, Evelyne; Saffirio, Chiara. Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 2, pp. 373-400. doi : 10.1016/j.anihpc.2014.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.01.001/
[1] Global existence of a weak solution of Vlasov's system of equations, USSR Comput. Math. Math. Phys. 15 (1975), 131 -143
,[2] On the plasma-charge model, Kinet. Relat. Models 3 no. 2 (2010), 241 -254 | Zbl
, ,[3] On the 2D attractive plasma-charge model, Commun. Partial Differ. Equ. 37 no. 7 (2012), 1237 -1272 | Zbl
, , , ,[4] Propagation of space moments in the Vlasov–Poisson equation and further results, Ann. Inst. Henri Poincaré 16 no. 4 (1999), 503 -533 | EuDML | Numdam | Zbl
,[5] Sub-linear estimate of large velocity in a collisionless plasma, Commun. Math. Sci. 12 no. 2 (2014), 279 -291 | Zbl
, ,[6] Ordinary differential equations, transport equations and Sobolev spaces, Invent. Math. 98 (1989), 511 -547 | EuDML | Zbl
, ,[7] Regularity and propagation of moments in some nonlinear Vlasov systems, Proc. R. Soc. Edinb. A 130 (2000), 1259 -1273 | Zbl
, , ,[8] Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math. 105 (1991), 415 -430 | EuDML | Zbl
, ,[9] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl. (9) 86 no. 1 (2006), 68 -79 | Zbl
,[10] On classical solutions in the large in time of the two-dimensional Vlasov equation, Osaka J. Math. 15 (1978), 245 -261 | Zbl
, ,[11] Moment propagation for weak solutions to the Vlasov–Poisson system, Commun. Partial Differ. Equ. 37 no. 7 (2012), 1273 -1285 | Zbl
,[12] Global existence of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equ. 95 (1992), 281 -303 | Zbl
,[13] The Cauchy problem for the 3-D Vlasov–Poisson system with point charges, Arch. Ration. Mech. Anal. 201 (2011), 1 -26 | Zbl
, , ,[14] Transport equations with unbounded force fields and application to the Vlasov–Poisson equation, Math. Models Methods Appl. Sci. 19 no. 2 (2009), 199 -228 | Zbl
,[15] Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Commun. Partial Differ. Equ. 16 no. 8–9 (1991), 1313 -1335 | Zbl
,[16] Global in time solution to the three-dimensional Vlasov–Poisson system, J. Math. Anal. Appl. 176 no. 1 (1996), 76 -91 | Zbl
,Cité par Sources :